

Performance Tuning for
Pentaho Data Integration (PDI)

Change log (if you want to use it):

Date Version Author Changes

Contents
Overview .. 1

Before You Begin .. 1

PDI Workflow .. 1

Identify, Eliminate, and Verify Bottlenecks ... 2

Identifying Bottlenecks with Step Metrics .. 2

Example of Input Bottleneck .. 2

Example of Output Bottleneck ... 3

Example of Transformation Bottleneck .. 3

Eliminating Bottlenecks ... 3

Verifying Bottlenecks ... 4

External Performance Factors .. 5

Network Performance ... 5

Data Source and Target Performance ... 6

Storage Performance ... 7

PDI Performance Tuning ... 9

PDI Transformation Design .. 9

Query Management ... 9

Database Management ... 10

Realtime Data on Demand ... 10

Scripting... 11

Manage Thread Priorities ... 11

Other Performance Optimization Options ... 12

PDI Job Design .. 13

Avoiding Loops ... 13

Scaling Up Transformations ... 14

CPU and Multithreading .. 14

Memory Utilization .. 15

Scaling Out Transformations .. 16

Other Related Information .. 17

Finalization Checklist.. 17

PDI Performance Tuning

Page 1

© Hitachi Vantara Corporation 2019. All Rights Reserved

Overview
This document covers some best practices on factors that can affect the performance of Pentaho Data
Integration (PDI) jobs and transformations. You will learn a methodical approach to identifying and
addressing bottlenecks in PDI.

Our intended audience is PDI administrators who are interested in maximizing PDI performance.

The intention of this document is to speak about topics generally; however, these are the specific
versions covered here:

Software Version(s)

Pentaho 7.x, 8.x

The Components Reference in Pentaho Documentation has a complete list of supported software and
hardware.

Before You Begin
Before beginning, use the following information to prepare for the procedures described in the main
section of the document. This document assumes that you have some knowledge of PDI and have
already installed Pentaho.

PDI Workflow

PDI transformations are extract, transform, and load (ETL) workflows that consist of steps linked
together as shown:

Figure 1: Sample PDI ETL Workflow

There are three basic types of steps:

1. Input step: Ingests data into PDI (for example, the Table input step)
2. Transformation step: Processes data within PDI (for example, the Data Validator, Filter

rows, and Modified JavaScript value steps)
3. Output step: Outputs transformed data from PDI (for example, the Table output step)

https://help.pentaho.com/Documentation/8.3/Setup/Components_Reference

PDI Performance Tuning

Page 2

© Hitachi Vantara Corporation 2019. All Rights Reserved

Identify, Eliminate, and Verify Bottlenecks
Within PDI, all steps are processed in parallel, and the overall speed of the transformation is capped
at the speed of the slowest step. Therefore, the following process is used to improve transformation
performance:

1. Identify the slowest step (the bottleneck).
2. Improve performance of the slowest step until it is no longer the bottleneck.
3. Repeat steps 1 and 2 for the new bottleneck and iterate until the service level agreement

(SLA) is met.

More information is available in the following sections of this document:

• Identifying Bottlenecks with Step Metrics
• Eliminating Bottlenecks
• Verifying Bottlenecks

Identifying Bottlenecks with Step Metrics
Row buffers are created between each step. This allows the steps to retrieve rows of data from their
inbound row buffer. Then, the rows are processed and passed to an outbound row buffer that feeds
into the subsequent step. Row buffers can hold up to 10,000 rows, but this can be configured for each
transformation.

The Step Metrics tab on the Execution Results pane will show realtime statistics for each step when
you run a transformation. The Input/Output field shows a realtime display of the number of rows in
the buffers feeding into and coming out of each step. You know that the step cannot keep up with the
rows being fed into it if the input of a step is full. Below are some examples.

Example of Input Bottleneck

This example shows a snapshot in real time of a running transformation:

Table 1: Input Bottleneck

Step Name Input/Output

Table input 0/50

Data validator 48/52

Filter rows 54/42

Modified JavaScript value 37/51

Table output 43/0

In this instance, the Table input step is the bottleneck because the buffers are so low (much less than
10,000) for the downstream steps.

PDI Performance Tuning

Page 3

© Hitachi Vantara Corporation 2019. All Rights Reserved

Example of Output Bottleneck

This example shows that the buffers are full (close to the buffer size of 10,000):

Table 2: Output Bottleneck

Step Name Input/Output

Table input 0/9720

Data validator 9850/9741

Filter rows 9922/9413

Modified JavaScript value 9212/9413

Table output 9985/0

In this case, PDI is waiting for the Table output step to consume rows. This means that the data target
(Table output) is the bottleneck.

Example of Transformation Bottleneck

This example shows that the row buffers are filled all the way through to the Modified JavaScript
value step:

Table 3: Transformation Bottleneck

Step Name Input/Output

Table input 0/9815

Data validator 9784/9962

Filter rows 9834/9724

Modified JavaScript value 9834/27

Table output 53/0

The Table output buffers are low, which shows that the data target has no trouble consuming output
from PDI. This indicates that the Modified JavaScript value step is the bottleneck.

Eliminating Bottlenecks
Consider the following actions to detect and eliminate bottlenecks:

Table 4: Eliminating Bottlenecks

Solution Explanation

Performance
Monitoring

Realtime performance monitoring captures throughput in rows per second for
each step, for several metrics. Performance monitoring values can be stored in
a centralized logging database to enable analyzing jobs that are run on remote
PDI services. Performance monitoring requires additional resources and can
be enabled or disabled on individual jobs and transformations.

https://support.pentaho.com/hc/en-us/articles/360001742172-Logging-Monitoring-and-Performance-Tuning-for-Pentaho

PDI Performance Tuning

Page 4

© Hitachi Vantara Corporation 2019. All Rights Reserved

Solution Explanation

Repeat
Measurements

Data caching can significantly affect performance for subsequent runs. For
example, a database may cache query results so that the next time the query
is run, it will return results much faster. Make sure to measure the same
scenario several times to account for caching.

Follow the guidelines in the External Performance Factors section of this document if the input or
output step is the bottleneck. This will help you address areas such as networking, database, or
storage optimization that can affect how quickly data can be imported to or exported from PDI.
Otherwise, the PDI Performance Tuning section gives suggestions for improving performance within
PDI.

We recommend selecting the Metrics tab (different from the Step Metrics tab) on the
Execution Results pane to view the length of time in milliseconds for the initialization and
execution of each transformation step. This can help you identify bottlenecks.

Verifying Bottlenecks
You can verify that the bottleneck is an output step by replacing it with a Dummy (do nothing) step,
which throws away the rows. It is likely that the output step is the bottleneck if the overall speed of
the transformation increases when you use this method.

Figure 2: Verifying Bottleneck as Output

You can replace an input step with a Generate rows step, a Data grid step, or a Text file input step that
is pointing to a file on a fast, local storage or a random access memory (RAM) drive. You can then
check if the transformation is faster.

Figure 3: Verifying Bottleneck as Input

Follow the guidelines in the PDI Performance Tuning section if the bottleneck step is a transformation
step.

PDI Performance Tuning

Page 5

© Hitachi Vantara Corporation 2019. All Rights Reserved

External Performance Factors
External factors, such as network or database performance, are likely the problem if the bottleneck is
an input or output step. PDI is part of a larger system that includes data sources, data targets,
networking, storage, and other infrastructure components. This section discusses these areas but
does not provide detailed tuning instructions, such as how to tune your Oracle database.

More information can be found on these topics in the following sections:

• Network Performance
• Data Source and Target Performance
• Storage Performance

Network Performance
Many times, the network is the bottleneck and throughput is capped by the network layer.

First, eliminate the network as the bottleneck by following these steps:

1. Export the source data to a local text file and measure how long it takes for the database to
export the data, without touching the network.

2. Copy the text file to the PDI server and measure the time for the transfer.
3. Modify the transformation to import the local file.
4. Run the transformation again and measure the time to import the local file, without

touching the network.
5. Compare these measurements to assess network performance.

Consider the following methods to assess for possible network bottlenecks:

Table 5: Network Bottleneck Troubleshooting

Solution Explanation

Network Sizing

Consider adding additional network interface controllers (NICs) or upgrading
to 10Gbps. Scale out data sources, targets, and PDI using clustering
technology, which optimizes network connectivity across multiple servers.
Ethernet bonding can provide increased throughput as well as failover.

Network
Hardware

Switches, routers, proxy servers, firewalls, and other network appliances can
create bottlenecks. Consider upgrading or bypassing these altogether.

WAN
Optimization

Moving data across a wide area network (WAN) presents several challenges.
Consider moving data sources, data targets, or PDI servers to the same local
area network (LAN). There are several techniques and third-party appliances
designed to improve throughput if you must move data across a WAN. One
alternative to direct database connections is to dump data to a text file and
perform a file transfer using a WAN optimized tool.

PDI Performance Tuning

Page 6

© Hitachi Vantara Corporation 2019. All Rights Reserved

Solution Explanation

Cloud
Computing

Network configuration in the cloud can cause issues due to the lack of
transparency in the implementation. Networking can also play a strong role in
cloud computing performance if you have your database in a noncloud
environment and your Pentaho Server in a cloud environment, or vice versa.
More information on this is available at Amazon EC2 Instance Types.

Colocation
Moving your database and Pentaho Server physically close together in the
same facility will keep network latency from being as much of a factor.

Robust Storage
Use a local attached solid state drive (SSD) instead of an elastic block store
(EBS), which sits on a network-attached storage (NAS). The Storage
Performance section of this document has more on data loss considerations.

Offline
Shipping

In extreme cases, it is faster to physically ship hard drives overnight to far-off
locations, avoiding the network altogether. Large data migration efforts
commonly make use of offline shipping.

Data Source and Target Performance
The performance of the data source or target can also be the cause of a bottleneck. Database
optimization is a technique for managing performance. Here are some of the more common
approaches to database optimization:

Table 6: Database Optimization Techniques

Solution Explanation

Query
Optimization

Many databases provide a SET EXPLAIN feature that allows you to determine
whether indexes are being used or if the database is performing a complete
table scan. Constraints and triggers can also affect performance.

Local Export/
Import

Import or export a local text file or pipe to /dev/null and measure the
throughput. This may represent the fastest throughput possible for the data
source or target.

Bulk Loaders
Many databases provide bulk loaders that may be faster than performing
insert queries. PDI includes bulk loader transformation steps for several
databases. PDI also supports calling command line bulk loaders.

Data Staging/
Preprocessing

Consider creating a materialized view, preprocessing data on the database, or
loading a staging table. These approaches can simplify the ETL logic and
possibly reduce data volume over the network.

Database
Technologies

Hadoop, NoSQL, analytical, multidimensional, in-memory, cache, and other
database technologies can provide better performance for certain situations.

Replication

Database replication allows a mirror image of a database to be kept close to
PDI. Keeping it on the same server or in the same datacenter can reduce or
even eliminate the need for network connectivity between PDI and the data
source or target.

https://aws.amazon.com/ec2/instance-types/

PDI Performance Tuning

Page 7

© Hitachi Vantara Corporation 2019. All Rights Reserved

Solution Explanation

Database
Design

Star schemas and other data mart design patterns can dramatically improve
performance at the cost of additional complexity and resources.

Clustering/
Sharding/
Partitioning

Some databases support table partitioning or database sharding, which can
improve the performance of certain types of queries. PDI has functionality for
configuring transformations to make use of these features. The PDI Clusters

section of this document has more information about using these features.

Storage Performance
Data may need to be stored outside of the database when working with data files, staging, batching,
archives, and more. Use the following table as a guide for choosing the correct storage option. The
throughput (MB/s) shown below are only rough estimates:

Table 7: Storage Performance

Solution
Approximate
MB/s

Explanation

RAM Disk 17,000

RAM is the fastest hardware storage option. The operating
system (OS) can be configured to cache files in RAM. These
drives are easily created in Linux or Unix and mounted to any
path like a regular hard drive. Frequently-used files can be
cached or staged on RAM drives for fast access or processing.
RAM is expensive, volatile (erased on reboot), and limited in
capacity.

SSD 2,000

SSDs provide fast, non-volatile (permanent) storage mounted as
a local hard drive. These can come in the form of a peripheral
component interconnect express (PCIe) card installed on the
server motherboard. SSDs also provide fast, random access
compared to rotational media.

NAS/SAN 30

NAS and storage area networks (SAN) provide failover,
redundancy, and (optionally) disaster recovery, offsite backup,
huge capacity, and more. These typically provide access
through the network filesystem (NFS), common internet
filesystem (CIFS), or the internet small computer systems
interface (iSCSI). Third-party vendors can provide local NAS or
SAN storage inside the data centers of cloud providers, such as
Amazon Web Services (AWS). This can provide a high-
performance alternative to S3 and EBS.

AWS EBS 30-125

EBS is provided by AWS. It is approximately ten times more
durable than physical hard drives due to replication on backend
NAS. Snapshots or RAID 10 is still recommended. Striping EBS
volumes can increase performance and capacity.

PDI Performance Tuning

Page 8

© Hitachi Vantara Corporation 2019. All Rights Reserved

Solution
Approximate
MB/s Explanation

AWS Glacier See
description

AWS Glacier is a low-cost, long-term cold storage. When you
make a request to retrieve data from Glacier, you initiate a
retrieval job. Once the retrieval job completes, your data will be
available to download for 24 hours. Retrieval jobs typically
finish within three to five hours. Upload and download speeds
may be similar to S3.

AWS S3 1
S3 provides scalability and easy management, but its
performance is much slower than EBS. More information is
available at Amazon S3.

vHDD (virtual
hard drive)

Depends on
type

Virtual hard drives are used by virtual machines (VMs). The
vHDD is presented to the VM as a local hard drive. These are
typically files stored on an NAS or SAN, but can be locally
attached storage as well.
Performance, cost, capacity, and other specifications depend on
multiple factors. These include cost of the storage server,
capacity limits imposed by the filesystem, or VMware. Some
other factors may include cloud infrastructure, speed of
networking and storage servers, load on shared resources, and
more.
vHDDs can be thin-provisioned (for example, a 100GB vHDD)
with 10GB data. In this example, it will only occupy 10GB on
backend storage, but will appear as 100GB to the VM’s OS.
vHDDs can also be expanded more easily than physical storage.
In some cases, the logical volume manager (LFM) can support
expansion of a vHDD with zero downtime.

HDD
(physical)

750

The throughput shown is for a single hard drive. RAID
configurations can provide redundancy, failover, higher
capacity, faster throughput, and lower latency. Rotational media
can be significantly slower for random access compared to RAM
and SSD.

https://aws.amazon.com/s3/

PDI Performance Tuning

Page 9

© Hitachi Vantara Corporation 2019. All Rights Reserved

PDI Performance Tuning
PDI performance is likely the issue when there is a transformation bottleneck. This section provides
techniques for tuning various aspects of PDI, including:

• PDI Transformation Design
• PDI Job Design
• Scaling Up Transformations
• Scaling Out Transformations

You should start with optimizing ETL to be as efficient as possible, and then evaluate platform-related
factors, such as hardware sizing and clustering.

PDI Transformation Design
PDI contains several techniques for designing and building ETL transformations. This section contains
best practices for maximizing transformation performance.

Query Management

The following table discusses techniques for managing queries to improve transformation
performance:

Table 8: Query Management Techniques

Technique Explanation

Data Caching

High network latency and/or slow database performance can make executing
multiple queries much slower than running a single bulk query. Most lookup
steps give you cache lookup values. You can also perform upfront loading of
records in a single query and cache the results, instead of performing multiple
queries.

Batch Updates
Batch updates can also reduce the number of queries. The commit size setting
controls the size of the batches. More information is available at Table Output.

https://help.pentaho.com/Documentation/8.3/Products/Table_Output

PDI Performance Tuning

Page 10

© Hitachi Vantara Corporation 2019. All Rights Reserved

Database Management

The following table discusses techniques for managing your database to improve transformation
performance:

Table 9: Database Management Techniques

Technique Explanation

Database
Sorting

Sorting on the database is often faster than sorting externally, especially if
there is an index on the sort field(s). The Memory Utilization section of this
document has more on configuring the Sort rows step to make use of
memory and CPU resources.

Remember that databases can sort differently, and Pentaho can sort
differently from how the database might sort. For example, some
databases do a case insensitive sort while Pentaho would do a case
sensitive sort.

Prepared
Statements

Most database steps prepare statements, which incurs some overhead up
front but improves performance overall. The Execute SQL script, Execute
row SQL script, and Dynamic SQL row steps do not perform this initial
statement preparation and may not perform as well.

Database
Processing

Performance will be better if data is processed directly on the database, in
some cases. This approach may eliminate the need for a PDI transformation.
Data can be preprocessed or staged on the database to simplify PDI
transformations. Transformation logic can also be moved to the target sources
in an ETL design pattern. Stored procedures, triggers, materialized views, and
aggregation tables are just some of the techniques you can use.

Realtime Data on Demand

PDI contains various tools for viewing data in real time, including report bursting. PDI transformations
can feed results into a PDI report template and burst the report out through email, or to a fileserver,
without having to stage the data in a reporting table.

Figure 4: Report Bursting

Some other techniques for viewing data in real time include:

• Extract, transform, and report (ETR): PDI transformations support ETR. Pentaho reports
and dashboard frameworks can use PDI transformations as a native data source.

PDI Performance Tuning

Page 11

© Hitachi Vantara Corporation 2019. All Rights Reserved

• PDI thin JDBC driver: Any application that connects to a Java database connectivity (JDBC)
data source can send an SQL query to a PDI transformation, using the PDI JDBC driver. PDI
will parse the where clause and pass criteria into transformation parameters that can drive
the logic of the transformation. The transformation feeds the results back to the client
application as a normal JDBC query result set. This can support near real time analytics.

Scripting

The Modified JavaScript value step provides enormous flexibility, but it may not perform as well as
other highly optimized, single-purpose transformation steps. The following table provides techniques
for improving Modified JavaScript value step performance:

Table 10: JavaScript Performance Techniques

Technique Explanation

Compatibility
Mode

Turn off compatibility mode when not needed. This will run the newer, faster
JavaScript engine.

User defined
Java class step

A User defined Java class step may perform better than a Modified
JavaScript value step.

Step plugin Consider writing a step plugin. This can provide better performance than using
a JavaScript step.

Manage Thread Priorities

Manage thread priorities is a transformation setting that allows Pentaho to improve performance
by reducing locking and lowering CPU usage. This setting is enabled by default in new transformations.

Manage thread priorities is configured in the Miscellaneous tab of the transformation’s settings:

Figure 5: Manage thread priorities

Although the manage thread priorities setting is enabled by default and is designed to improve
performance, in one specific case this setting can have a significant negative impact on performance:

PDI Performance Tuning

Page 12

© Hitachi Vantara Corporation 2019. All Rights Reserved

when you are merging data from two hops where those two hops are producing records at
significantly different throughputs.

Manage thread priorities will only impact performance when you are merging two hops using a step
that is neither the Append streams step, nor in the Joins category in PDI.

Consider the following common example where Manage thread priorities can cause a negative
performance impact.

You are processing a 100 million record customer file. When processing this file, you want to
evaluate the customer’s age and set a flag if they are under 18. Minors only make up 1% of your
customer population.

With this requirement, you may use the following pattern in your transformation.

1. Text file input step
2. To a Filter rows step on customer’s age
3. To two Set field value steps to set the minor flag
4. Merge these two streams together with a Dummy step
5. Write the result to an output file

Figure 6: Manage thread priorities Example

Assuming the customer file is randomly distributed on age, the sfv: minor_flag = Y step will produce
records at 1% of the throughput of the sfv: minor_flag = Y step. In this situation, it is possible that
disabling Manage thread priorities will improve performance of the transformation.

There are many factors that impact performance. Baseline transformation performance with
this setting enabled and compare it to a performance test after disabling this setting.

Other Performance Optimization Options

Some other things to consider when designing transformations include:

• Constant and static values: Avoid calculating the same static value on every row. You can
simply calculate constants in a separate transformation and set variables to be used in
downstream transformations. You can also calculate constants in a separate stream and use
the Join Rows (Cartesian product) step to join the constant into the main stream.

• Lazy conversion: This setting will postpone data conversion as long as possible, including
character decoding, data conversion, and trimming. This can be helpful if certain fields are
not used, if data will be written out to another text file, or in some bulk loader scenarios.

PDI Performance Tuning

Page 13

© Hitachi Vantara Corporation 2019. All Rights Reserved

• NIO Buffer Size: This parameter determines the amount of data read at one time from a
text file. This can be adjusted to increase throughput.

• Performance monitoring and logging: Detailed performance logging and monitoring can
be very helpful in development and test environments. The logging level can be turned down
and performance monitoring can be disabled for production environments, to conserve
resources. Performance Tuning has more information on this topic.

PDI Job Design
PDI contains several techniques for designing and building ETL jobs. This section provides best
practices for improving job performance.

Avoiding Loops

Avoid creating loops in PDI jobs. In the example below, the Get customer info transformation gets a
customer record, and then the Send report transformation sends a report to that customer. The Send
report transformation continues to the Dummy job entry and loops back to Get customer info. It
retrieves the next customer and the loop continues until there is no data left:

Figure 7: Looping

Rather than looping in the job, set the Execute every input row setting on the Send report
transformation:

https://support.pentaho.com/hc/en-us/articles/360001742172-Logging-Monitoring-and-Performance-Tuning-for-Pentaho
https://help.pentaho.com/Documentation/8.3/Setup/Performance_tuning

PDI Performance Tuning

Page 14

© Hitachi Vantara Corporation 2019. All Rights Reserved

Figure 8: Settings for Send report Transformation

The Get customer info transformation will retrieve the customers and send them to the Send report
transformation, which will run once for every incoming row. This approach achieves the same result
and will perform better.

Some other techniques to consider when designing ETL jobs include:

• Database connection pooling: This may be an option if you are using Carte or Pentaho
Server. There is some overhead with establishing new database connections at run time.
Enable connection pooling to maintain a pool of open connections that can be used as
needed by the job or transformation.

• Checkpoints: You can specify checkpoints in your jobs and restart jobs from the last
successful checkpoint. This avoids having to restart jobs from the beginning in case of
failure.

Scaling Up Transformations
This section describes how you can configure transformations and jobs to make the most of your CPU
and memory resources.

CPU and Multithreading

PDI transformations are multithreaded. This means you can increase the number of copies of a step
to increase threads assigned to that step, allowing you to assign more CPU resources to slower steps.
Each step in a transformation gets its own thread, and transformation steps run in parallel.

Doing this makes use of multiple cores, for example:

PDI Performance Tuning

Page 15

© Hitachi Vantara Corporation 2019. All Rights Reserved

Figure 9: Increasing Number of Row denormaliser Step Copies

After Row denormaliser, we add a Sorted merge because otherwise the data would no longer be
sorted at that point in the transformation. The Row denormaliser step is assigned three step copies.
Each of the copies will spawn its own thread. Therefore, the transformation will spawn a total of three
threads that could use up to three cores on the PDI server.

Make sure not to allocate too many threads, as this can degrade performance. We recommend
you keep the number of steps to less than three to four times the number of cores.

Some other techniques for memory and CPU resources include:

• Blocking steps: Both Blocking step and Block this step until steps finish allow you to
pause downstream steps until previous steps have completed. This may be necessary for
the logic to function properly, but it may increase the overall time for the transformation to
complete. It also requires more memory because the row buffers will fill up with results from
all rows before proceeding.

• Parallel transformations: PDI job entries normally run sequentially. You can configure the
job to run two or more transformations in parallel.

• Transformation combining: Combining two or more transformations into a single
transformation will run all steps in parallel. However, running parallel transformations is
preferable to combining transformations, both in terms of code readability and simplicity.

Memory Utilization

Numerous PDI transformation steps allow you to control how memory is used. Allocating more
memory to PDI in conjunction with fine-tuning step settings can have significant impact on
performance, for example:

Creating a Row Buffer

Create a row buffer between each step. Since row buffers are stored in memory, this setting allows
you to increase or decrease memory used for the buffers. Configure the size of the buffer (in rows) by
right-clicking on the transformation, choosing Settings…, and going to the Miscellaneous tab. There,
you can modify the Nr of rows in rowset setting.

Sorting Rows

Sort all rows in memory, since it is significantly faster than using a memory-plus-disk approach. Edit
the Sort rows step, using the Sort size (rows in memory) setting to control this. The Free memory
threshold (in %) helps avoid filling up available memory. Be sure to allocate enough RAM to PDI. The
Compress TMP Files? setting can also conserve memory, at the cost of CPU resources.

PDI Performance Tuning

Page 16

© Hitachi Vantara Corporation 2019. All Rights Reserved

Joins and Lookup Steps

Use joins and lookup steps to configure data caching. The configuration settings control the cache
size. This reduces the number of database queries and improves performance, at the cost of using
more memory.

Scaling Out Transformations
While scaling up transformations requires you to add resources to a single server to run a
transformation, scaling out allows you to use multiple servers to run a transformation. When you scale
out a transformation, each server you use is processing part of the transformation, such as a subset
of rows.

More information for setting up and using scaling out of transformations can be found at:

• Pentaho MapReduce
• Adaptive Execution Layer (AEL)

https://help.pentaho.com/Documentation/8.3/Products/Pentaho_MapReduce
https://help.pentaho.com/Documentation/8.3/Products/Adaptive_Execution_Layer

PDI Performance Tuning

Page 17

© Hitachi Vantara Corporation 2019. All Rights Reserved

Other Related Information
Here are some links to information that you may find helpful while using this best practices document:

• Amazon EC2 Instance Types
• Amazon S3
• Logging, Monitoring, and Performance Tuning for Pentaho
• Pentaho and Amazon Web Services
• Pentaho Components Reference
• Pentaho MapReduce
• Pentaho Performance Tuning
• Pentaho Table Output Step
• Adaptive Execution Layer (AEL)

Finalization Checklist
This checklist is designed to be added to any implemented project that uses this collection of best
practices, to verify that all items have been considered and reviews have been performed.

Name of the Project:___

Date of the Review:__

Name of the Reviewer:___

Item Response Comments

Did you use the Step Metrics tab to
identify your bottleneck?

YES________ NO________

Did you use performance
monitoring to help eliminate the
bottleneck?

YES________ NO________

Did you measure repeatedly to
ensure the elimination of the
bottleneck?

YES________ NO________

Did you use a Dummy (do nothing)
step to verify the location of your
bottleneck?

YES________ NO________

Did you identify any possible
external performance factors that
may affect PDI performance?

YES________ NO________

Did you use the tips for creating
jobs and transformations that
reduce bottleneck risk?

YES________ NO________

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/s3/
https://support.pentaho.com/hc/en-us/articles/360001742172-Logging-Monitoring-and-Performance-Tuning-for-Pentaho
https://support.pentaho.com/hc/en-us/articles/214361346-Best-Practice-Pentaho-and-Amazon-Web-Services
https://help.pentaho.com/Documentation/8.3/Setup/Components_Reference
https://help.pentaho.com/Documentation/8.3/Products/Pentaho_MapReduce
https://help.pentaho.com/Documentation/8.3/Setup/Performance_tuning
https://help.pentaho.com/Documentation/8.3/Products/Table_Output
https://help.pentaho.com/Documentation/8.3/Products/Adaptive_Execution_Layer

	Overview
	Before You Begin
	PDI Workflow

	Identify, Eliminate, and Verify Bottlenecks
	Identifying Bottlenecks with Step Metrics
	Example of Input Bottleneck
	Example of Output Bottleneck
	Example of Transformation Bottleneck

	Eliminating Bottlenecks
	Verifying Bottlenecks

	External Performance Factors
	Network Performance
	Data Source and Target Performance
	Storage Performance

	PDI Performance Tuning
	PDI Transformation Design
	Query Management
	Database Management
	Realtime Data on Demand
	Scripting
	Manage Thread Priorities
	Other Performance Optimization Options

	PDI Job Design
	Avoiding Loops

	Scaling Up Transformations
	CPU and Multithreading
	Memory Utilization
	Creating a Row Buffer
	Sorting Rows
	Joins and Lookup Steps

	Scaling Out Transformations

	Other Related Information
	Finalization Checklist

