

Pentaho Analyzer and
Impala Data Source

Change log (if you want to use it):

Date Version Author Changes

Contents
Overview .. 1

Cloudera Impala Recommendations ... 2

Use Distributed Computing Architecture Concepts .. 2

Partition and Distribute Your Data Properly .. 2

Impala Over Parquet Files... 2

Refresh Statistics and Metadata .. 3

COMPUTE STATS .. 3

INVALIDATE METADATA ... 4

Enable Your Hadoop Cluster for Short-Circuit Reads ... 4

JDBC and Parameter Recommendations .. 4

Implement an Impala Balancer .. 4

Snappy Compression... 4

Pentaho Settings and Recommendations... 5

Analyzer Settings .. 5

Use APIs to Tune the Values ... 5

Mondrian Schema Design Recommendations ... 6

Use Partitions ... 6

Forcing Hierarchies to Use Partitions .. 6

Model Your Hierarchy Based on Partition Design ... 7

Advanced Modeling Techniques (Impala) ... 9

Using the SQL Tag .. 9

Using Roles .. 10

Known Issues and Solutions ... 11

Performance – Mondrian Not Hitting Cache for Non-Empty Measure Values 11

Solution: .. 11

Limitation – Impala Multiple Distinct Counts ... 11

Solution: .. 11

Related Information ... 12

Finalization Checklist.. 13

This page intentionally left blank.

Pentaho Analyzer and Impala Data Source

Page 1

© Hitachi Vantara Corporation 2018. All Rights Reserved

Overview
This document covers some best practices on using Pentaho Analyzer against Impala data sources. In
it, you will learn how to prepare data at the Hadoop Distributed File System (HDFS) level, partition
your data, set the configuration for Impala and Mondrian. You will also learn about schema
recommendations and settings for Analyzer.

The intention of this document is to speak about topics generally; however, these are the specific
versions covered here:

Software Version(s)

Pentaho Analyzer 6.x, 7.x, 8.0

Cloudera Impala CDH 5.3 through CDH 5.7

The Components Reference in Pentaho Documentation has a complete list of supported software and
hardware.

https://help.pentaho.com/Documentation/8.0/Setup/Components_Reference

Pentaho Analyzer and Impala Data Source

Page 2

© Hitachi Vantara Corporation 2018. All Rights Reserved

Cloudera Impala Recommendations
This section contains our recommendations for using Impala as a data source for Pentaho Analyzer.
You can find details on these topics in the following sections:

• Use Distributed Computing Architecture Concepts
• Refresh Statistics and Metadata

Use Distributed Computing Architecture Concepts
For performance and efficiency reasons, Cloudera’s current Impala planner (execution optimizer)
requires the largest fact table to be listed first in the FROM clause. Tables listed after the first FROM
clause table, which are typically the smaller dimension tables, are broadcast to all nodes that
participate in the hash join.

Cloudera’s later versions of the Impala optimizer introduced improvements in the query planner to
prevent this from happening. Pentaho’s online analytical processing (OLAP) engine generates
structured query language (SQL) at runtime, so you cannot depend on table order to follow this
Impala-imposed performance requirement.

Here are a couple of ways to list the largest table first:

• Use a view.
• De-normalize the tables to a single table to avoid joins at runtime.

We recommend using a de-normalized table, making all fields available in one table, and creating all
dimensions as degenerated dimensions. The de-normalized table, along with the use of parquet
(columnar storage) as the file format, will perform well and use storage efficiently.

Partition and Distribute Your Data Properly

Partition your Impala tables on commonly used fields. It is also helpful to set the data file sizes to be
approximately the same as the recommended HDFS block size.

These general recommendations work well for Hive tables. You should also consider using Impala
with parquet files, for Impala performance.

Impala Over Parquet Files

Using Impala over parquet files requires you to read from HDFS, and to build the tuple data. Typically,
the HDFS reading is done quickly, but building the tuples can be a high-cost process. For example, if
most of the data queried is stored in one or two nodes, those nodes will peg the Central Processing
Unit (CPU) to build the tuples while other nodes are idle.

Pentaho Analyzer and Impala Data Source

Page 3

© Hitachi Vantara Corporation 2018. All Rights Reserved

Because of this high cost, the parquet file size for the table needs to be reduced so that any partition
query can distribute the activity to multiple nodes. This allows more data nodes to participate in the
scans, aggregations, etc.

Make sure that you do not over-reduce the file size.

Although reducing file size helps to distribute work to multiple nodes, generating too many small files
can cause other issues. Evaluate each use case and dataset for the best selection of partition fields
and file sizes.

This document’s section on Mondrian Schema Design recommendations has more information about
partition-related topics. Here is an example to help illustrate:

If you have a dataset that is partitioned by [YEAR, MONTH], after materialization of the parquet
files, your files are about 256MB in size. However, a single month of data fills up a single file/node.
If you perform queries for your current month, the pruning process pushes that work to the data
node where your data file is stored. This can create a bottleneck on that single node, and in many
cases, the node can go "hot.”

However, if you reduce the file size to about 32MB, your files will get distributed to multiple nodes,
your queries will perform much faster, and the load on any individual node will be reduced
accordingly.

Refresh Statistics and Metadata
You should consider performing the following commands after changing data, ingesting new data, or
data rebalancing or partitioning: COMPUTE STATS and INVALIDATE METADATA.

COMPUTE STATS

This command gathers information about the volume and distribution of data in a table and all
associated columns and partitions. The information is stored in the metastore database, and is used
by Impala to help optimize queries.

After you load new data into the partition, use COMPUTE STATS on an entire table or on the partition.
The Cloudera documentation on Performance Considerations for Join Queries has more details on
using different statistics.

A known issue prior to Impala version 1.3.1 could cause excessive memory usage during a
COMPUTE STATS operation on a parquet table. Workaround: Issue the command SET
NUM_SCANNER_THREADS=2 in the Impala-shell before issuing the COMPUTE STATS statement.
Then issue UNSET NUM_SCANNER_THREADS, before continuing with queries.

https://www.cloudera.com/documentation/enterprise/5-7-x/topics/impala_perf_joins.html#perf_joins
https://issues.cloudera.org/browse/IMPALA-488

Pentaho Analyzer and Impala Data Source

Page 4

© Hitachi Vantara Corporation 2018. All Rights Reserved

INVALIDATE METADATA

Use INVALIDATE METADATA if data was altered in a more extensive way, such as being reorganized
by the HDFS balancer, to avoid performance issues like defeated short-circuit local reads.

If you use Impala version 1.0, the INVALIDATE METADATA statement works just like the Impala 1.0
REFRESH statement did. The Impala 1.1 REFRESH is optimized for the common use case of adding
new data files to an existing table, and now requires the table name argument.

Enable Your Hadoop Cluster for Short-Circuit Reads

Reads will typically go through the DataNode in HDFS. When a client asks the DataNode to read a file,
the file is a read-off of the disk and gets sent to the client over a Transmission Control Protocol (TCP)
socket. Short-circuit reads bypass the DataNode and allow the client to directly read the file.

Set up your Hadoop cluster for short-circuit reads, on the client and on the HDFS DataNode, by
enabling libhadoop.so. Apache’s documentation on Native Libraries has more information about
enabling this library.

JDBC and Parameter Recommendations

We recommend using Cloudera’s Java Database Connectivity (JDBC) driver and disabling JDBC
database pooling.

If you have not set a specific memory limit, Impala will create its own default limit of 1024.

Implement an Impala Balancer

Using a load-balancing proxy server for Impala has the following advantages:

• Applications connect to a single well-known host and port, rather than keeping track of the
hosts where the Impala daemon is running.

• If any host running the Impala daemon becomes unavailable, application connection
requests still succeed because you always connect to the proxy server rather than a specific
host running the Impala daemon.

• The coordinator node for each Impala query potentially requires more memory and CPU
cycles than the other nodes that process the query. The proxy server can issue queries using
round-robin.

More information on load-balancing Impala can be found in Impala Concepts and Architecture.

Snappy Compression

Use Snappy compression codecs in conjunction with container file formats that support splitting.
Snappy alone does not support splitting. Large input files should not be compressed with just Snappy.
Use it with container file formats that support both compression and splitting, such as Parquet or
AVRO. Snappy compression is enabled by default in Cloudera.

https://hadoop.apache.org/docs/r2.5.2/hadoop-project-dist/hadoop-common/NativeLibraries.html
https://www.cloudera.com/documentation/enterprise/5-7-x/topics/impala_concepts.html
https://www.cloudera.com/documentation/enterprise/5-7-x/topics/introduction_compression_snappy.html

Pentaho Analyzer and Impala Data Source

Page 5

© Hitachi Vantara Corporation 2018. All Rights Reserved

Pentaho Settings and Recommendations
This section describes all settings and recommendations for your Pentaho Server(s) to improve user
experience, reduce potential errors, and reduce the number of queries sent to your underlying data
source (Impala).

Analyzer Settings
Analyzer tasks run concurrently in independent threads. It uses a maximum of three concurrent tasks
by default, and when more tasks are required, they are queued. The maximum queue size by default
is 100.

There are some recommended settings for Analyzer to reduce the number of queries issued for
Impala, and to increase the number of concurrent implementations of Analyzer views. These are the
properties that handle queues in your analyzer.properties file:

• report.request.service.core.pool.size=3
o Core number of threads in the pool
o Recommendation: Keep the default settings.

• report.request.service.max.pool.size
o Max number of threads in the pool
o Recommendation: Make sure the value is 80% of the thread cores on the system. For

a 16-core server, we recommend setting this parameter to 14.
• report.request.service.queue.size

o Request queue size is the MAX number of items that can be in queue. Queue is
processed in as many parallel threads as we have set up in the
report.request.service.max.pool.size, and the remaining requests are
queued.

o Users will get a message saying cannot process due to limitation reached in cases of
queue overloads.

o Recommendation: Increase the queue size to 1000.
• filter.dialog.apply.report.context

o When showing the list of available members in the filter dialog, limit the members by
report measures and attribute filters.

o Recommendation: Keep this value set to false.

Use APIs to Tune the Values

The following API provides information of the running values, in real-time. Use it while performing
stress tests to see the queue and the remaining queues.

http://${BASE_PENTAHO_URL}/api/repos/xanalyzer/service/admin/pool

Pentaho Analyzer and Impala Data Source

Page 6

© Hitachi Vantara Corporation 2018. All Rights Reserved

Mondrian Schema Design Recommendations
As described in the Use Distributed Computing Architecture Concepts section, having a wide unique
table is the recommendation for keeping Impala work focused on per-node individual activities,
without needing to distribute smaller data tables to other nodes.

Use Partitions
When it comes to partition usage, the Impala planner requires the partition fields to be included in
the SQL statement WHERE clause0F

1. Pay special attention while building a Mondrian schema that will
force the SQL WHERE clause to be included in the queries, whenever possible. The Mondrian engine
builds the SQL dynamically, and you will not be able to declare the WHERE clause.

The following technique describes how to force the Mondrian engine to create the SQL that you are
looking for.

Forcing Hierarchies to Use Partitions

Mondrian hierarchies define the dimension’s level and dependency. Each level describes the behavior
of the levels in the underlying database: the OLAP engine and the display client.

Typically, the best practice is to create Unique Keys in levels to reduce the number of WHERE clause
fields to be included in the SQL statement. You should also create an index on the unique field.
However, for Impala or partitioned data sources, it is recommended to keep the uniqueMembers to
FALSE. This will make any query with lower levels include the parent level element in the SQL
statement.

Make your partitions and subpartitions based on hierarchy levels, whenever possible. If you
intend to use the partitions that you already have, you must make sure that the highest level is
fully-qualified.

The highest level in the example below is YEAR. Follow along to see how this works:

If we have a time dimension based on YEAR, MONTH, or DAY, by defining each level as
uniqueMembers=false, any query done at DAY level will automatically include the YEAR,
MONTH, and DAY in the WHERE clause.

1 Mondrian dynamic SQL generation does not support PARTITION statements.

Pentaho Analyzer and Impala Data Source

Page 7

© Hitachi Vantara Corporation 2018. All Rights Reserved

Figure 1: Example Partitioning

Model Your Hierarchy Based on Partition Design
Partitions designed at database levels are based on common field usage plus data grouping, size, and
segmentation. In most cases, the selection of the fields does not follow a business logical grouping of
fields. The OLAP engine will only include the partition fields if the end-user filters by the dimension
elements, when the fields included in the partition belong to a different dimension’s natural design.
We recommend creating a hierarchy that simulates the partition design to give you additional control.

By adding a dimension that includes the same partition fields in the correct order, you can force the
engine to include them in any query that is done (see the Use Partitions section). Dimension design is
not restricted to partition fields only; it can include other fields, as well.

Figure 2: Hierarchy

Pentaho Analyzer and Impala Data Source

Page 8

© Hitachi Vantara Corporation 2018. All Rights Reserved

This technique cannot be applied to every use case. It is only recommended to be used when business
logic can be aligned with the partition design, forcing any selection of a subpartition to include all
parent partition elements, as well.

Pentaho Analyzer and Impala Data Source

Page 9

© Hitachi Vantara Corporation 2018. All Rights Reserved

Advanced Modeling Techniques (Impala)
This section explains advanced implementation methods based on the Streamlined Data Refinery
(SDR), Session Level filtering with Dynamic Signal Processor (DSP), roles, or both. These methods make
it possible to place Mondrian cubes on top of a smaller dataset. The concepts explained in this section
are abstract and provide an overview of some alternatives to increase query performance.

The techniques described will constrain the cube to use a subset of the data. Therefore, it is important
for the end-user to understand that when the cube/view displays it is showing all values, it refers to
all values in the constrained subset.

Figure 3: Cubes

As described in the section Mondrian Schema Design recommendations, make sure that Impala
planner uses partitions, as this will improve performance.

Using the SQL Tag
Mondrian schema can inject WHERE clauses on all SQL queries. This is much easier to implement when
there is one wide fact table.

Before you use SQL tags, consider how this might restrict the data that your users can view.

SQL statements are included as <SQL> tags in the <TABLE> tag as follows:

<TABLE name="table">
 <SQL dialect="generic">
 Statements
 </SQL>
</TABLE>

The inclusion of this statement can force the use of partitions. This can also be done with SDR or DSP
and session variables.

Pentaho Analyzer and Impala Data Source

Page 10

© Hitachi Vantara Corporation 2018. All Rights Reserved

Any change to the schema with DSP will generate cache segmentation. This means different
cache sections will be created for every different schema that exists, without the possibility of
reusing the cache.

Using Roles
Use roles in Mondrian to restrict the data that the end-user can view, and enforce restrictions to
specific members on the dimensions. These roles are implemented as WHERE clauses when querying
the FACT table. One difference with this approach, and previous approaches, is that roles are based
on a logical model level and the permissions level can only be With Access or Without Access.

When a role is defined based on a dimension member(s), it is translated to the engine. This includes
those members internally, such as when they are included in a filter statement.

Roles can help enforce filters on dimensions. Furthermore, they can act on hidden or nonvisible
dimensions, as well as regular dimensions.

The maintenance of roles in a Mondrian schema can be expensive and could require the need to
create a Custom Role Delegate, like this:

protected Access getAccess(Member member, Access access) {
 boolean grantAccess = false;

 if (member.getHierarchy().getName().contains("Market")){
 List <Member> members = member.getAncestorMembers();
 for (Member mem : members) {
 if (territory.trim().equalsIgnoreCase(mem.getName().trim())){
 return Access.ALL;
 }
 }

 if (territory.trim().equalsIgnoreCase(member.getName().trim())){
 return Access.ALL;
 }
 }
 return Access.NONE;
}

When you use roles, it does not generate cache segmentation.

The Mondrian Schema Element Reference has a list of elements along with definitions.

https://help.pentaho.com/Documentation/8.0/Data/Multidimensional/Cache_Control/000
https://help.pentaho.com/Documentation/8.0/Data/Multidimensional/Mondrian_Element_Reference

Pentaho Analyzer and Impala Data Source

Page 11

© Hitachi Vantara Corporation 2018. All Rights Reserved

Known Issues and Solutions
There are a couple of known issues for using Impala as a data source with Pentaho Analyzer.

Performance – Mondrian Not Hitting Cache for Non-Empty
Measure Values
Due to the way that Analyzer generates non-empty filters in MDX, a lot of Analyzer queries are pushed
down to the cluster.

The MDX snippet that is being generated is Filter(SET, Not IsEmpty([Measure])). This
snippet is then translated by Mondrian into SQL as a HAVING clause of the type HAVING not(

sum(measure_column) is null). This results in many combinations of measures for different
conditions, all of which must be individually cached.

Solution:

Setting the mondrian.native.filter.enable=false in the mondrian.properties file causes
the non-empty clause to be performed by Mondrian, which limits the amount of different SQL queries
that are sent to the cluster. While this reduces the need for excess querying the underlying data
source, it pushes more work to the OLAP engine. This may not be ideal, based on the dimension sizes.

Limitation – Impala Multiple Distinct Counts
Impala does not support multiple distinct counts on the same query. Your Mondrian cube may
generate such a request, in which case, the Impala query will fail.

Approximations may not be suitable for your use case.

Solution:

The solution is based on a system-wide setting that enables Impala to do APPROX count. Read more
from the APPX_COUNT_DISTINCT article in the Cloudera documentation.

https://issues.cloudera.org/browse/IMPALA-110
https://www.cloudera.com/documentation/enterprise/5-7-x/topics/impala_appx_count_distinct.html

Pentaho Analyzer and Impala Data Source

Page 12

© Hitachi Vantara Corporation 2018. All Rights Reserved

Related Information
Here are some links to information that you may find helpful while using this best practices document:

• Apache
o APPX_COUNT_DISTINCT Query Option (CDH 5.2 or higher only)
o Hadoop Native Libraries Guide
o Impala-110: Add support for multiple distinct operators in the same query block
o Impala-488: IO Mgr should take instance memory limit into account when creating io

buffers
• Cloudera

o Impala Concepts and Architecture
o Performance Considerations for Join Queries
o Snappy Compression

• Pentaho
o Components Reference
o Mondrian Schema Element Reference
o Segment Cache Architecture

https://www.cloudera.com/documentation/enterprise/5-7-x/topics/impala_appx_count_distinct.html
https://hadoop.apache.org/docs/r2.5.2/hadoop-project-dist/hadoop-common/NativeLibraries.html
https://issues.apache.org/jira/browse/IMPALA-110
https://issues.apache.org/jira/browse/IMPALA-488
https://issues.apache.org/jira/browse/IMPALA-488
https://www.cloudera.com/documentation/enterprise/5-7-x/topics/impala_concepts.html
https://www.cloudera.com/documentation/enterprise/5-7-x/topics/impala_perf_joins.html#perf_joins
https://www.cloudera.com/documentation/enterprise/5-7-x/topics/introduction_compression_snappy.html
https://help.pentaho.com/Documentation/8.0/Setup/Components_Reference
https://help.pentaho.com/Documentation/8.0/Data/Multidimensional/Mondrian_Element_Reference
https://help.pentaho.com/Documentation/8.0/Data/Multidimensional/Cache_Control/000

Pentaho Analyzer and Impala Data Source

Page 13

© Hitachi Vantara Corporation 2018. All Rights Reserved

Finalization Checklist
This checklist is designed to be added to any implemented project that uses this collection of best
practices, to verify that all items have been considered and reviews have been performed.

Name of the Project:___

Date of the Review:__

Name of the Reviewer:___

Considerations Response Comments

Are all fields used by the cube
on the Mondrian schema on
the same table?

YES________ NO________

Did you review File Size and
Distribution?

YES________ NO________

Is your load process refreshing
Metadata and Statistics?

YES________ NO________

Have you disabled JDBC
Pooling?

YES________ NO________

Implemented Impala Balancer? YES________ NO________

Implemented parquet files
with Snappy compression?

YES________ NO________

Was your data partitioned? YES________ NO________

Is data partition by Time
Dimensions?

YES________ NO________

Applied Mondrian Schema
design, keeping partition
usage tips in consideration?

YES________ NO________

Was any of the advanced
partitioning methods
explained here used in this
project?

YES________ NO________

	Overview
	Cloudera Impala Recommendations
	Use Distributed Computing Architecture Concepts
	Partition and Distribute Your Data Properly
	Impala Over Parquet Files

	Refresh Statistics and Metadata
	COMPUTE STATS
	INVALIDATE METADATA
	Enable Your Hadoop Cluster for Short-Circuit Reads
	JDBC and Parameter Recommendations
	Implement an Impala Balancer
	Snappy Compression

	Pentaho Settings and Recommendations
	Analyzer Settings
	Use APIs to Tune the Values

	Mondrian Schema Design Recommendations
	Use Partitions
	Forcing Hierarchies to Use Partitions

	Model Your Hierarchy Based on Partition Design

	Advanced Modeling Techniques (Impala)
	Using the SQL Tag
	Using Roles

	Known Issues and Solutions
	Performance – Mondrian Not Hitting Cache for Non-Empty Measure Values
	Solution:

	Limitation – Impala Multiple Distinct Counts
	Solution:

	Related Information
	Finalization Checklist

