

Pentaho Data Integration
(PDI) Project Setup and
Lifecycle Management

This page intentionally left blank.

Contents
Overview .. 1

Before You Begin .. 2

Terms You Should Know ... 2

Use Case: Sales Reporting and Data Exports ... 2

Demo Download Link .. 2

Content and Configuration Management ... 3

Managing Your Content .. 3

Configuration Primer ... 4

Git Repositories .. 4

PDI-Git Integration ... 5

ETL Repository Structure .. 6

Git Repository Branches and Tags ... 7

Deployment Strategy ... 8

Managing Your Configuration .. 8

Default PDI Configuration in the .kettle Folder .. 9

Specific Variables in the properties Folder ... 12

PDI Start Scripts .. 14

Password Encryption ... 17

Security .. 17

Configuration Repository Structure .. 18

Data Integration Framework .. 19

Dedicated Framework Repository ... 19

Concepts .. 20

Main Job and Work Units .. 20

Job Restartability .. 20

Tracking Current Status with the job_control Table .. 21

Triggering Framework Job Executions with jb_launcher Job .. 22

Main Job Template ... 23

Development Variable Workaround with jb_set_dev_env Job ... 24

Framework Repository Structure ... 25

Logging and Monitoring .. 26

File Logging ... 26

Logging Levels .. 27

Redirect Output to Kettle Logging ... 28

Central Logging Directory ... 28

Database Logging ... 29

Job Database Logging .. 30

Transformation Database Logging .. 31

Logging Concurrency ... 32

Exception Handling .. 33

Concurrency Checks .. 33

Dependency Management ... 35

Job Restartability .. 35

Data Restartability ... 39

Transformation and Job Error Handling ... 40

Launching DI Solution Work Units with jb_work_unit Job ... 43

Using the DI Framework .. 46

Setting Up the Local Environment ... 47

Loading the Development Environment ... 48

Referencing Other DI Artifacts ... 48

Creating a Main Job .. 49

Writing to Log Format .. 49

Optimizing Database Logging .. 49

Debugging ... 49

Changing Execution to Local Filesystem or Pentaho Repository ... 50

Documenting Your Solution ... 51

Automating Deployment ... 51

Creating a Development Guidelines Handbook .. 53

DI Framework Demo .. 54

Extending the Current DI Framework .. 55

Shared Artifacts Between Projects .. 56

Running Multiple Projects Within a Single Pentaho Server .. 57

Related Information ... 58

PDI Project Setup and Lifecycle Management

Page 1

© Hitachi Vantara Corporation 2020. All Rights Reserved

Overview
Starting your Data Integration (DI) project means planning beyond the data transformation and
mapping rules to fulfill your project’s functional requirements. A successful DI project proactively
incorporates design elements for a DI solution that not only integrates and transforms your data in
the correct way but does so in a controlled manner.

You should consider such nonfunctional requirements (NFRs) before starting the actual development
work to make sure your developers can work in the most efficient way. Forcing such requirements in
at the end of the project could be disruptive and hard to manage.

Although every project has its nuances and may have many nonfunctional requirements, this
document focuses on the essential and general project setup and lifecycle management
requirements and how to implement such requirements with Pentaho Data Integration (PDI).

The document describes multiple DI solution design best practices. It also presents a DI framework
solution that illustrates how to implement these concepts and separate them from your actual DI
solution. This framework is nothing more than a set of jobs and transformations that acts as a wrapper
around your actual DI solution, taking care of all setup, governance, and control.

Consider the following common project setup and governance challenges that many projects face:

• Multiple developers will be collaborating, and such collaboration requires development
standards and a shared repository of artifacts.

• Projects can contain many solutions and there will be the need to share artifacts across
projects and solutions.

• The solution needs to integrate with your Version Control System (VCS).
• The solution needs to be environment-agnostic, requiring the separation of content and

configuration.
• Deployment of artifacts across environments needs to be automated.
• The end result will be supported by a different team, so logging and monitoring should be

put in place that supports the solution.
• Failed jobs should require a simple restart, so restartability must be part of job design.

The intention of this document is to speak about topics generally; however, these are the specific
versions covered here:

Software Version(s)

Pentaho 7.x, 8.x, 9.0

The Components Reference in Pentaho Documentation has a complete list of supported software and
hardware.

https://www.scaledagileframework.com/nonfunctional-requirements/
https://help.pentaho.com/Documentation/9.0/Setup/Components_Reference

PDI Project Setup and Lifecycle Management

Page 2

© Hitachi Vantara Corporation 2020. All Rights Reserved

Before You Begin
This document assumes that you have knowledge about Pentaho Data Integration (PDI) and that you
have already installed the Pentaho software to be able to run the demo that comes with this best
practice document to illustrate the concepts covered.

Terms You Should Know
Here are some terms you should be familiar with:

• Local (local) environment: developer’s local machine used for ETL development and unit
tests through Spoon

• Development (dev) environment: Pentaho Server environment used for system tests
• Test (test) environment: Pentaho Server environment used for user acceptance tests
• Production (prod) environment: Pentaho Server environment used as production

environment

Use Case: Sales Reporting and Data Exports
Throughout this document and the demo, we apply the concepts covered to the following sample use
case:

Janice works for an online retailer and is working on two DI projects:
• Creating a sales reporting data warehouse
• Generating data exports for a tax agency

The projects have the following environments available, each with a dedicated function. Together,
these environments define the lifecycle of the solution before it hits production:

• Local
• Dev
• Test
• Prod

Demo Download Link
The demo that comes with this best practices document to illustrate the concepts covered is available
on HCP Anywhere.

https://help.pentaho.com/Documentation/9.0/Setup/Pentaho_installation
https://hcpanywhere.hitachivantara.com/u/x-6lrjnupYbV7qWx/7d5658f1-927a-4cf4-b386-462ab16b011b?l
https://hcpanywhere.hitachivantara.com/u/x-6lrjnupYbV7qWx/7d5658f1-927a-4cf4-b386-462ab16b011b?l

PDI Project Setup and Lifecycle Management

Page 3

© Hitachi Vantara Corporation 2020. All Rights Reserved

Content and Configuration Management
Before exploring the DI framework solution, illustrating concept details and showing how to
implement them with PDI, we will introduce the following development and lifecycle management
concepts:

• Managing Your Content
• Managing Your Configuration

All jobs and transformations discussed in this document are available within the demo for
inspection and usage.

Managing Your Content
Use version control when you work on a DI project with many contributors. Store your DI project
content (PDI jobs and transformations, external SQL or other scripts, documentation, or master input
files) in a central, version-controlled repository. This repository should also support other team
collaboration and release management capabilities.

Although the Pentaho repository offers a basic revision control system, it is not intended to
replace common market tools, such as Git. If you need the advanced features of an enterprise
VCS, we recommend that you use one.

Version control for the Repository is disabled by default. The version history in this case is handled by
Git. There is no need for special configuration on the developer machines, because they will not be
using the Pentaho Server. Use Version History has more information about configuring this.

It is recommended to integrate PDI with Git repositories for storage and version control of the project’s
DI artifacts throughout the development lifecycle. However, the project does make use of the Pentaho
Repository as a container for the jobs and transformations, once the Git repositories deploy a release.
This will be true for all environments where the Pentaho Server is involved (development, test, and
production).

This requires you to design your solution so that it can work well in both environments:

• Working and executing file-based during development to integrate with Git.
• Executing on the Pentaho Server, using the Pentaho Repository to store jobs and

transformations.

Although the examples in this document make use of Git, this document contains project setup
information that will be relevant for you even if you do not use Git. For those using a VCS other
than Git, note that these instructions may be inappropriate for the alternative VCS. For advice on
VCS-specific integrations, please contact Hitachi Vantara.

Jobs and transformations will be deployed to the Pentaho Repository only on those environments that
involve the Pentaho Server and use the Pentaho Repository. Other solution artifacts such as SQL

https://help.pentaho.com/Documentation/9.0/Products/Use_version_history

PDI Project Setup and Lifecycle Management

Page 4

© Hitachi Vantara Corporation 2020. All Rights Reserved

scripts and shell scripts do not deploy to the Pentaho Repository, instead remaining on the filesystem.
The following sections detail these operations.

Configuration Primer
The configuration repository holds all the needed configuration properties to develop and run the
ETL, separated by project environment. This forces the developer to parameterize the ETL. As a result,
the solution becomes environment-agnostic, a key attribute powering the solution’s lifecycle
management. Our project’s configuration repository has one folder per project environment:

Table 1: Configuration Repository Structure

Folder Contains Configuration Details For:
config-local Developer’s local machines

config-dev Development environment

config-test Test environment

config-prod Production environment

Use the following subfolders to structure the content stored in your config folders. All config
folders have these folders available, and they play a key role in your DI framework:

Table 2: Subfolders for Config Folders

Folder Description

.kettle The KETTLE_HOME folder used by PDI to hold its default application and
configuration files

metastore Run configuration and slave server details

properties Specific project properties files where project specific variables get
introduced

Git Repositories
Our DI project runs in different environments as it moves through the development and test lifecycle.
This means that you need to separate the DI artifacts and code from the configurations that make the
code run properly.

The ETL must be designed in such a way that all external references (such as database connections,
file references, and all internal calls to jobs and transformations) are made using variables and
parameters, which get their values from the config files part of the configuration repository.

The concepts and demo discussed in this document focus on two DI projects, creating a sales data
warehouse (sales_dwh) and generating data exports (data_export). Since Git’s main functionalities
like branching and merging work at the level of the repository, and because we want to have
maximum flexibility and power for our two projects, we split them up into separate Git repositories.

PDI Project Setup and Lifecycle Management

Page 5

© Hitachi Vantara Corporation 2020. All Rights Reserved

Additionally, to enforce the separation of content and configuration, we end up with the following
four main Git repositories:

Table 3: Git Repositories

Git Repository Description

sales_dwh

This repository holds all the sales_dwh project’s ETL code and
other DI content artifacts.
In this document, we will refer to such a repository as the ETL
repository.

sales_dwh-
configuration

This repository holds all the necessary configurations, separated by
environment, necessary to run the ETL for the sales_dwh project.
In this document, we will refer to such a repository as the configuration
repository.

data_export

This repository holds all the data_export project’s ETL code and
other DI content artifacts.
In this document, we will refer to such a repository as the ETL
repository.

Note that the demo does not include this repository. We
include it in this table to clarify the concept of project and
project-configuration repositories.

data_export-
configuration

This repository holds all the necessary configurations, separated by
environment, necessary to run the ETL for the data_export project.
In this document, we will refer to such a repository as the configuration
repository.

Note that the demo does not include this repository. We
include it in this table to clarify the concept of project and
project-configuration repositories.

All project environments will have these repositories checked out from Git onto the local filesystem of
the server.

PDI-Git Integration
Every developer checks out the needed Git repositories onto their local filesystem when developing,
working with PDI in a file-based method without a Pentaho repository. The same way of working holds
true for most version control systems. Working file-based has consequences for things like sharing
database connections.

PDI Project Setup and Lifecycle Management

Page 6

© Hitachi Vantara Corporation 2020. All Rights Reserved

ETL Repository Structure
The ETL repository holds all the project’s ETL code and other DI content artifacts. Use the following
folders to structure the content stored in the project’s etl repository. All projects’ etl repositories
have these folders available, and they play a key role in your DI framework:

Table 4: ETL Repository Folders

Folder Description

content-pdi Hosts all the PDI jobs and transformations (subfolders will be
created to structure the ETL even more)

file-mgmt Hosts all input and output files related to the project

scripts All the script files the solution uses

sql The necessary data definition languages (DDLs) to create the
necessary database tables

log

The project log folder to where all project log execution should be
pointed. Add a .gitignore rule to the repository to make sure the
content of this folder never hits the central repository on Git. Later
in this document, you will see that you can also configure logging to
be central for the server and not solution specific.

documentation Markdown notation for relevant documentation to address the
main logic decisions under the current sub-project

If needed, you can split these mandatory folders further. For example, for the sales_dwh project,
your ETL jobs and transformations follow a typical data warehouse flow going through staging,
operational data store (ODS), and warehouse. Because of this, you should group your content in the
content-pdi folder into three subfolders: staging, ods, and warehouse.

This creates the following structure for your Git etl repositories:

|-- sales_dwh
| |-- content-pdi
| | |-- staging
| | |-- ods
| | |-- warehouse
| |-- file-mgmt
| |-- scripts
| |-- sql
| |-- log
| |-- documentation
|-- data_export
| |-- content-pdi
| |-- file-mgmt
| |-- scripts
| |-- sql
| |-- log
| |-- documentation

PDI Project Setup and Lifecycle Management

Page 7

© Hitachi Vantara Corporation 2020. All Rights Reserved

Git Repository Branches and Tags
These branching and tagging examples only show ways that you can use certain Git features to
support the lifecycle management of your project’s etl and configuration repositories. They are
not necessarily requirements.

Make sure to consult your company or industry standards and adapt accordingly.

Git configuration can be done through a Git client.

Git Branches
Git repository branches provide an isolated environment for applying new features to your DI
solution. This helps you thoroughly test the features before integrating them into your production-
ready code. Isolation improves collaboration since multiple features can be implemented in parallel
without conflicting with each other.

Branching does require a configuration manager, so consider whether you want to add this feature
based on your team’s size and progress in Git adoption.

For each Git repository in your project (etl, configuration), create the separation between
development and production code with at least the following permanent branches:

Table 5: Git Repository Branches

Branch Description

Dev This branch holds the ETL code and the configurations that are
under development.

Master This branch holds the ETL code and the configurations that are
ready for production deployment.

Updates between the two branches (either by merge or by pull request) should always be made
through a formal request and performed by a responsible party.

Both repositories could also be controlled by limited lifecycle branches. Create these branches to
meet development needs. Their names should match their purpose. Here are a couple examples of
limited lifecycle branches:

Table 6: Git Repository Limited Lifecycle Branches

Branch Description

sprint-X Branch created to support the development for sprint X and shared
by all developers on the sprint.

sprint-X-feature-Z Branch for feature Z that is being created during sprint X to allow
some developers to work on a specific feature.

Merge limited lifetime branches with the dev branch after the unit and system tests are performed
and accepted, or with the master branch when the user acceptance tests (UAT) are performed and

PDI Project Setup and Lifecycle Management

Page 8

© Hitachi Vantara Corporation 2020. All Rights Reserved

accepted. The merge between these two branches should be formally requested with a pull request.
The QA team then tests and accepts the merge request.

Git Tags
In addition to branches, the project can also make use of tags, which are human-readable labels that
you can add to your commits. This way, Git can tag specific points in history as being important.

Tags should have names that are unique in the entire Git database. You can use this functionality to
mark system tests, UAT, or production releases.

An example is release tags, on master/production branches, to quickly go back if something goes
wrong with a new production feature. The same can apply for UAT, SIT, and so on, so that the test
team can revert to a point in time before the problem occurred, and resume testing.

Deployment Strategy
The deployment process makes sure all necessary project artifacts become available on the required
Pentaho Server machines as your project moves through its lifecycle.

The Git repositories are checked out to the local filesystem of the Pentaho Server machines after you
deploy a test or production release. Only the jobs and transformations from the etl repository end
up in the Pentaho Repository. All other artifacts stay on the filesystem so that they can be referenced
from the jobs and transformations at execution time.

For example, a job might reference a shell script to assist the job in executing a specific task. This
script will be available from the filesystem and not from the Pentaho Repository.

The PDI toolkit offers multiple features that can support and automate your deployment process.

Managing Your Configuration
Each folder in the project’s configuration repository represents a different project environment
configuration. The separation between content (etl repository) and configuration (configuration
repository) enforces the creation of a neutral solution, a key attribute powering the solution’s lifecycle
management.

From the Content Management section, you already know that the configuration repository is divided
into the following folders, matching the available environments on the development pipeline:

• config-pdi-local
• config-pdi-dev
• config-pdi-test
• config-pdi-prod

Each of these folders holds the following subfolders:

• .kettle
• metastore
• properties

PDI Project Setup and Lifecycle Management

Page 9

© Hitachi Vantara Corporation 2020. All Rights Reserved

Each environment folder also has an environment configuration file (env.conf) and multiple script
files to make sure the PDI Java Virtual Machine (JVM) is started with the environment-specific
configurations. These will be described later:

• spoon.bat/sh
• pan.bat/sh
• kitchen.bat/sh
• start-pentaho.bat/sh

The env.conf configuration file is there to configure the scripts on where to find the local Pentaho and
Java installation:

Table 7: env.conf Configuration File Variables

Variable Description Example

PENTAHO_HOME Local Pentaho installation
directory

/opt/pentaho

PENTAHO_JAVA_HOME Local Java installation directory /opt/pentaho/java

PENTAHO_DI_JAVA_OPTIONS JVM memory settings -Xms1024m -Xmx2048m

KETTLE_CLIENT_DIR

Optional. Makes it possible to
overwrite the PDI client
installation directory. Defaults to
<PENTAHO_HOME>/design-
tools/data-integration

/opt/client_tools/data-
integration

By separating the configuration from the actual code, the ETL solution can run in all environments
without any changes to the ETL code.

The following sections provide more configuration details.

Default PDI Configuration in the .kettle Folder
The .kettle folder holds the default PDI configuration files. The following ones will be critical to your
DI framework:

Table 8: .kettle Folder PDI Configuration Files

Folder File Description

.kettle

kettle.properties Default environment variables available to PDI

shared.xml Shared connections for working file-based

repositories.xml Pentaho repository connection information

.spoonrc Spoon GUI options (such as grid size)

.languageChoice User language for Spoon

This folder is located by default under the user’s home directory but can be loaded to a different
directory to centralize this between all developers. Centralizing the .kettle folder under the
configuration repository in Git (configuration/<config-env>/.kettle) guarantees that all
developers share the same .kettle settings per environment.

PDI Project Setup and Lifecycle Management

Page 10

© Hitachi Vantara Corporation 2020. All Rights Reserved

You can change the default location of the .kettle directory by setting the KETTLE_HOME
environment variable, pointing to the folder holding the .kettle folder.

In each environment, whenever you start PDI (client or server), you specify the correct KETTLE_HOME
variable. This way, PDI starts up with the dedicated .kettle settings specific for that environment
(local or server configuration properties).

Variables will be introduced from the outside to your DI framework and the actual DI solution in two
main ways: kettle.properties (.kettle folder) and the properties files (properties folder).

Global Variables in kettle.properties
The kettle.properties file is the main configuration file for PDI. The DI framework uses this file to
make certain key variables available to the framework and the actual DI solution. The variables in this
file are considered global, shared among your individual projects.

The benefit of declaring global variables with the kettle.properties file is that they are, by
default, available to your PDI JVM. The downside of kettle.properties when using the
Pentaho Server is that you require a server restart to pick up new entries in this file.

Each configuration environment has its own version of this file, with the correct values for each of the
key variables that are needed by the DI framework:

Table 9: Variables

Variable Description Example

ROOT_DIR

Filesystem path to the project’s parent folder.
This always points to the filesystem.

This variable, included for completeness,
is not part of the kettle.properties
file and will be set in one of the later
detailed scripts.

C:/Github

CONTENT_
DIR

The root folder to the ETL artifacts. Depending
on the environment, it can have a filesystem
path (developer machines), or a Pentaho
Repository path (all other environments).
Using both a ROOT_DIR and a CONTENT_DIR
variable gives you the flexibility to have some
artifacts on the filesystem and some in the
Pentaho Repository.

• local: C:/Github

• server: /public

CONFIG_
DIR

Filesystem path to the configuration folder used
by the current environment. The configuration
repository will never be deployed to the
Pentaho Repository, therefore this variable
inherits from ${ROOT_DIR}.

${ROOT_DIR}/

PDI Project Setup and Lifecycle Management

Page 11

© Hitachi Vantara Corporation 2020. All Rights Reserved

Variable Description Example

LOG_DIR

Filesystem path to the root directory that holds
the logging folder, inheriting from
${ROOT_DIR}. Later in this document, you will
see that you can also configure logging to be
central for the server and not solution specific.

${ROOT_DIR}

FILE_
MGMT_
DIR

Filesystem path to the root directory that holds
the file_mgmt folder, inheriting from
${ROOT_DIR}.

${ROOT_DIR}

PDI
default
logging
variables

Please refer to the Logging and Monitoring
section.

DI_
SERVER

DI Server connection details
(DI_SERVER.PROTOCOL, HOST, PORT, WEBAPP)

DI_SERVER.PROTOCOL=http
DI_SERVER.HOST=localhost
DI_SERVER.PORT=8080
DI_SERVER.WEBAPP=pentaho
DI_SERVER.USERNAME=admin
DI_SERVER.PASSWORD=password

As you can see, most of these global variables are related to key locations in the solution: the main
root directory, the content directory, the configuration directory, the logging directory, and so on.
These variables will be used in the solution to refer to other artifacts.

Note that many of these global properties inherit from the ROOT_DIR or CONTENT_DIR variables. The
reason for still having them at kettle.properties level is that this gives you the flexibility to define
a different path (that is, not a subfolder from CONTENT_DIR) and also makes the solution clearer by
having dedicated variables for dedicated functionality.

Sharing Database Connections with shared.xml
Since you will not be using the Pentaho Repository in your local environment, you need to have an
alternative available for sharing database connections between developers, jobs, and
transformations. When you work file-based, you can use shared.xml.

The shared.xml file holds the configuration details of the database connections shared among all
the developers and all PDI jobs and transformations per environment. All development will be done
using the Git repository, so you can use the shared.xml file to share database connections when
working file-based with PDI. Database connections are set up environment-specific.

This file is only useful within your local environment when using Spoon. Once the ETL code is deployed
to the Pentaho Server, the database connections will be deployed to the Pentaho Repository.

Since this file is part of the common .kettle directory, all developers have access to the same
database connections. Developers should only use shared database connections in their jobs and
transformations.

PDI Project Setup and Lifecycle Management

Page 12

© Hitachi Vantara Corporation 2020. All Rights Reserved

Spoon GUI Options in .spoonrc
The .spoonrc file holds the Spoon GUI options which you can set through Tools > Options in Spoon.
We recommend using a canvas grid size of 32 pixels and, if desired, using a specific tab color indicating
the project environment (such as local=green, prod=red).

The canvas grid size of 32 pixels guarantees that no developer can change the layout of a job or
transformation by simply opening it. The following properties set this behavior:

ShowCanvasGrid=Y

CanvasGridSize=32

Since all developers are starting Spoon through the environment specific spoon.bat/sh script which
makes sure the right environment details get loaded, you can avoid mistakes by making it visually
clear which Spoon you are using. The following properties make your tab green:

TabColorR54=0

TabColorG54=255

TabColorB54=64

Figure 1: Spoon Tab Color

Specific Variables in the properties Folder
Where kettle.properties holds the global variables for the project, the properties files within
the properties folder hold the project variables that are more subject to change and the variables
dedicated to a specific job or transformation within the project.

The kettle.properties file provides an easy way to introduce global variables to PDI, but the
downside is that any changes to the file require a Pentaho Server restart for the changes to be picked
up by the server. That is why you would only use it for global variables that have a small chance of
changing over the lifetime of the projects.

The properties files will be loaded at job or transformation execution time, allowing you to
introduce new variables in a dynamic way. The properties files also allow you to introduce more
structure by having separate properties files per project or job.

At a minimum, we recommend that you introduce project and job properties files. Look at it this
way: when the sales_dwh_staging job of your sales_dwh project gets executed, the
kettle.properties global variables that are available by default will make sure the global variables
get introduced. This way, the main directories are set, and logging settings are defined globally. We
will also load the project properties file (sales_dwh.properties) and the job properties file
(sales_dwh_staging.properties). This allows you to introduce variables valid at the project level

PDI Project Setup and Lifecycle Management

Page 13

© Hitachi Vantara Corporation 2020. All Rights Reserved

(shared among jobs within the project) and variables valid at the specific job level. You can define all
the levels you need and create properties files accordingly.

Project Specific Variables in project.properties
In addition to other variables, all project.properties files introduce _HOME variants of the _DIR
variables in kettle.properties, making the variables project specific. For example, the
sales_dwh.properties file introduces the following mandatory variables:

Table 10: Mandatory Variables in sales_dwh.properties

Variable Description Example
PROJECT_
NAME The name of the project within the ETL repository sales_dwh

CONTENT_
HOME

The folder that houses the ETL artifacts for this specific
project. Since ${CONTENT_DIR} indicates whether to use a
filesystem or Pentaho Repository, this variable can simply
inherit from that variable.

• local:
${CONTENT_DIR}/
sales_dwh/
content-pdi

• server:
${CONTENT_DIR}/
sales_dwh

LOG_HOME The file logging location of the project, inheriting from
${LOG_DIR}.

${LOG_DIR}/
sales_dwh/log

FILE_
MGMT_
HOME

The file_mgmt location of the project, inheriting from
${FILE_MGMT_DIR}

${FILE_MGMT_DIR}/
sales_dwh/
file-mgmt

SQL_HOME The SQL location of the project, inheriting from
${ROOT_DIR}

${ROOT_DIR}/
sales_dwh/
/sql

SCRIPT_
HOME

The script location of the project, inheriting from
${ROOT_DIR}

${ROOT_DIR}/
sales_dwh/scripts

Apart from these mandatory variables, the project.properties files can introduce any variable
that is needed at the project level.

Note that although you defined ${PROJECT_NAME}, you still need to hardcode the project
name in all other variables. That is because the Set Variables job entry used later on in the DI
framework declares those variables in parallel and not sequentially.

PDI Project Setup and Lifecycle Management

Page 14

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 2: Set Variables Job Entry

Job Specific Variables in job.properties
Your projects will most likely contain multiple main jobs. While your project.properties can
introduce variables valid for the whole project, you can use the job.properties files to introduce
variables for the specific job. There are no mandatory variables at this level. The job.properties
files will have the same name as the name of their job.

PDI Start Scripts
Before you start Spoon, Kitchen, Pan, or Pentaho Server for a specific project environment, you need
to run environment-specific start scripts that will set some environment variables, change the
KETTLE_HOME location, change the metastore location, and load the right environment properties
before starting the actual PDI clients or server. It is important that we start the client tools or the
Pentaho Server this way to have them configured for the right environment. Four scripts are available
per environment in the config directory:

• spoon.bat/sh
• kitchen.bat/sh
• pan.bat/sh

• start-pentaho.bat/sh (only available for the server environments)

These scripts are wrappers for the actual Spoon and Pentaho Server scripts, and are part of the
Pentaho installation directory.

Figure 3: Scripts Hierarchy

Developers should use the spoon.bat/sh script, located in the config-pdi-local directory, to
start Spoon on their local development machines. Starting Spoon this way gives it the right
configurations to work with, pointing to the .kettle folder from the config-pdi-local
environment, and all other specific settings for the local environment.

PDI Project Setup and Lifecycle Management

Page 15

© Hitachi Vantara Corporation 2020. All Rights Reserved

See the sales_dwh-configuration/config-pdi-local/spoon.sh script:

#! /bin/sh
#PROJECT_NAME = current project name, eg. sales_dwh
#PROJECT_ENV = current folder name, eg. config-pdi-local

#Determine the PROJECT_NAME and _ENV configuration based on parent
directory
export PROJECT_NAME=$(basename $(dirname $PWD) -configuration)
#removing -configuration from dir name
export PROJECT_ENV=$(basename $PWD)

echo "***" Setting PROJECT_NAME to $PROJECT_NAME "***"
echo "***" Setting PROJECT_ENV to $PROJECT_ENV "***"

#BASE_CONFIG_DIR is used later in init.sh to call back to this config-dir
export BASE_CONFIG_DIR=$PWD

#Capture current dir to switch back after execution
export ORIG_DIR=$PWD

cd "$PWD"/../../framework/bin
#Call framework common script
sh spoon.sh
cd $ORIG_DIR

Alternatively, see the sales_dwh-configuration/config-pdi-local/spoon.bat script:

@echo off

REM Determine the PROJECT_NAME and _ENV configuration based on parent
directory
for %%a in ("%~dp0\.") do set "PROJECT_NAME_TEMP=%%~nxa"
set PROJECT_NAME=%PROJECT_NAME_TEMP:-configuration=%

for %%a in ("%~dp0\.") do set "PROJECT_ENV=%%~nxa"

ECHO *** Setting PROJECT_NAME to "%PROJECT_NAME%" ***
ECHO *** Setting PROJECT_ENV to "%PROJECT_ENV%" ***

REM BASE_CONFIG_DIR is used later in init.bat to call back to this config-
dir
set BASE_CONFIG_DIR=%CD%

REM Capture current dir to switch back after execution
set ORIG_DIR=%CD%
CD %~dp0\\..\\..\\framework\\bin
REM Call framework common script
CALL spoon.bat %*
cd %ORIG_DIR%

The scripts simply set two environment variables and call the spoon script located within the
framework Git repository (bin directory that we will discuss in detail in the Data Integration
Framework section.

PDI Project Setup and Lifecycle Management

Page 16

© Hitachi Vantara Corporation 2020. All Rights Reserved

See the framework/bin/spoon.sh script:

. ./init.sh

sh $KETTLE_CLIENT_DIR/spoon.sh $OPT "$@"

Alternatively, see the framework/bin/spoon.bat script:

CALL init.bat

CALL %KETTLE_CLIENT_DIR%\Spoon.bat %OPT% %*

The scripts call the init script located in the bin directory and start the actual spoon script located
within the local Pentaho installation directory.

See the framework/bin/init.sh script:

#!/bin/bash

Set Environment
ROOT_DIR="$PWD"/../..
PROJECT_ENV="${PROJECT_ENV:-config-pdi-local}"

echo "***" Setting ROOT_DIR to "$ROOT_DIR" "***"
echo "***" Running with "$PROJECT_ENV" environment settings "***"

Load Environment Configuration
#. $ROOT_DIR/$PROJECT_NAME-configuration/$PROJECT_ENV/env.conf
. $BASE_CONFIG_DIR/env.linux.conf
echo "***" Setting PENTAHO_HOME to $PENTAHO_HOME "***"

Set Additional Variables
export KETTLE_CLIENT_DIR="${KETTLE_CLIENT_DIR:-$PENTAHO_HOME/design-
tools/data-integration}"
export KETTLE_HOME=$BASE_CONFIG_DIR
export KETTLE_META_HOME=$BASE_CONFIG_DIR
export OPT="$OPT -DPENTAHO_METASTORE_FOLDER=$KETTLE_META_HOME –
DROOT_DIR=$ROOT_DIR -DPROJECT_ENV=$PROJECT_ENV –
DPROJECT_NAME=$PROJECT_NAME"

echo "***" Setting KETTLE_CLIENT_DIR to $KETTLE_CLIENT_DIR "***"
echo "***" Setting KETTLE_HOME to $KETTLE_HOME "***"
echo "***" Setting KETTLE_META_HOME to $KETTLE_META_HOME "***"

Alternatively, see the framework/bin/init.bat script:

@echo off

REM Set Environment
REM ~dp0 has \ at end already
SET ROOT_DIR=%~dp0..\..

IF "%PROJECT_ENV%"=="" (SET PROJECT_ENV=config-pdi-local)

ECHO *** Setting ROOT_DIR to "%ROOT_DIR%" ***
ECHO *** Running with "%PROJECT_ENV%" environment settings ***

PDI Project Setup and Lifecycle Management

Page 17

© Hitachi Vantara Corporation 2020. All Rights Reserved

REM Load Environment Configuration
FOR /F "usebackq delims=" %%x IN ("%BASE_CONFIG_DIR%\env.windows.conf") DO
SET %%x
ECHO *** Setting PENTAHO_HOME to %PENTAHO_HOME% ***

REM Set Additional Variables
IF "%KETTLE_CLIENT_DIR%"=="" (SET
KETTLE_CLIENT?DIR=%USERPROFILE%\%PENTAHO_HOME%\data-integration)
SET KETTLE_HOME=%BASE_CONFIG_DIR%
SET KETTLE_META_HOME=%BASE_CONFIG_DIR%
SET OPT="-DPENTAHO_METASTORE_FOLDER=$KETTLE_META_HOME%" "-
DROOT_DIR=%ROOT_DIR%" "-DPROJECT_ENV=%PROJECT_ENV%" "-
DPROJECT_NAME=%PROJECT_NAME%"

ECHO *** Setting KETTLE_CLIENT_DIR to %KETTLE_CLIENT_DIR% ***
ECHO *** Setting KETTLE_HOME to %KETTLE_HOME% ***
ECHO *** Setting KETTLE_META_HOME to %KETTLE_META_HOME% ***

The scripts set the ROOT_DIR variable, load the env.conf file variables, set the location of the Kettle
clients, set the correct KETTLE_HOME and location of the metastore, and set the right JVM settings.

The other client and server scripts work in a similar fashion.

Use the start-pentaho.bat/sh script to start the Pentaho Server on the environments that use the
Pentaho Server for job execution. Starting the Pentaho Server this way gives it the right environment
configuration. The actual script is like the one for Spoon.

Password Encryption
Storing passwords in plaintext inside properties files poses risks. There are two ways to secure
passwords in PDI:

• Kettle obfuscation
• Advanced Encryption Standard (AES) encryption

Kettle obfuscation is applied by default, while AES encryption requires additional configurations.

For greater security, we recommend using the AES standard. More information on how to
configure PDI for AES is available in AES Security.

The password security method you choose is applied to all passwords, including those in database
connections, transformation steps, and job entries.

For demonstration purposes only, the remainder of this document and all included samples will
have passwords in plaintext and will not have password encryption enabled.

Security
The security of the DI solution is composed of multiple layers:

• AES Password Encryption: As discussed in Configuration Management, no plaintext
passwords will be stored in configuration files.

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://help.pentaho.com/Documentation/9.0/Setup/AES_security

PDI Project Setup and Lifecycle Management

Page 18

© Hitachi Vantara Corporation 2020. All Rights Reserved

• Git repository and branch access is password restricted. Developers only have access to
the projects folders or the configuration folders of the environments that they will be
developing and testing on.

• Pentaho Repository access is password restricted. Developers only have access to those
Pentaho Repositories on the environments that they will be developing and testing on.

• Machine access is password restricted. Developers only have access to those
environments that they will be developing and testing on.

Configuration Repository Structure
In summary, you now have the following structure for your sales_dwh project’s Git configuration
repository:

|-- sales_dwh-configuration
| |-- config-pdi-local
| | |-- .kettle
| | | |-- kettle.properties
| | | |-- shared.xml
| | | |-- repositories.xml
| | | |-- .spoonrc
| | | |-- .languageChoice
| | |-- properties
| | | |-- project.properties
| | | |-- jb_main_sales_dwh_staging.properties
| | |-- metastore
| | |-- env.linux.conf
| | |-- env.windows.conf
| | |-- spoon.bat/sh
| | |-- kitchen.bat/sh
| | |-- pan.bat/sh
| |-- config-pdi-dev
| | |-- .kettle
| | | |-- kettle.properties
| | | |-- shared.xml
| | | |-- repositories.xml
| | | |-- .spoonrc
| | | |-- .languageChoice
| | |-- properties
| | | |-- project.properties
| | | |-- jb_main_sales_dwh_staging.properties
| | |-- metastore
| | |-- env.linux.conf
| | |-- env.windows.conf
| | |-- spoon.bat/sh
| | |-- kitchen.bat/sh
| | |-- pan.bat/sh
| | |-- start-pentaho.bat/sh
| |-- config-pdi-test
…
| |-- config-pdi-prod
…

PDI Project Setup and Lifecycle Management

Page 19

© Hitachi Vantara Corporation 2020. All Rights Reserved

Data Integration Framework
Now that you have seen the basic concepts of content and configuration management, take a first
look at the DI framework solution that builds on those best practices and that illustrates how to
implement all other project setup and governance best practices that will be covered later in this
document.

The DI framework is a set of jobs and transformations that act as a wrapper around your actual DI
solution, taking care of all setup, governance, and control aspects of your solution. By abstracting
these concepts from the actual DI solution, the development team can focus on the actual jobs and
transformations.

You can find details on these topics in the following sections:

• Dedicated Framework Repository
• Concepts
• Triggering Framework Job Executions with jb_launcher Job
• Main Job Template
• Development Variable Workaround with jb_set_dev_env Job
• Framework Repository Structure

Dedicated Framework Repository
So far, we have been talking about two main Git repositories per project: etl and configuration.

The DI framework, which is a set of jobs and transformations, is stored in its own Git repository,
framework. This repository has the same structure as any other project under the etl repository:

|-- framework
| |-- content-pdi
| |-- bin
| |-- sql
| |-- documentation

The benefits of having the framework stored in a separate Git repository include:

• You can work on it by itself without affecting the actual DI solution.
• You can apply a different release cycle to it.
• You can apply different security roles to it.

In the PDI Start Scripts section, we discussed the bin folder in the framework repository. The scripts
in this folder abstract the core logic from the scripts in the config directories. By abstracting it here,
the logic can be maintained in a single location and is not repeated across all config scripts.

PDI Project Setup and Lifecycle Management

Page 20

© Hitachi Vantara Corporation 2020. All Rights Reserved

In addition to having a dedicated repository, you also have two kettle.properties variables
indicating the framework’s location:

FRAMEWORK_DIR=${ROOT_DIR}/framework

FRAMEWORK_HOME=${ROOT_DIR}/framework/content-pdi

This is based on the same reasoning as before: the _DIR variable is available to reference all artifacts
that will stay on the filesystem (like scripts), while the _HOME variable can reference the DI content that
will be deployed to the Pentaho Repository.

You also have a dedicated properties file, called framework.properties.

For now, the only important variables here are the ones defining the pdi_control database
connection. The pdi_control connection contains the job_control table. This table holds many
critical roles within the framework and always reflects the current status per job in the actual DI
solution.

Table 11: Control Variables

Category Variables Description

pdi_control
database
connection
variables

PDI_CONTROL.HOST
PDI_CONTROL.PORT
PDI_CONTROL.DB
PDI_CONTROL.SCHEMA
PDI_CONTROL.USER
PDI_CONTROL.PASS

These variables will be used in the
shared.xml database connection
definition of the pdi_control
database connection.

job_control
table

PDI_CONTROL.TABLE The name of the job_control table
used

Concepts
Before we dive into the details of the DI framework, we need to discuss some terms:

Main Job and Work Units
Your projects will most likely consist of several main jobs, at which level a schedule will be defined.

Work units are the jobs or transformations that are being executed in sequence by the main job.
They act as a checkpoint at which job restartability gets implemented. Think of them as multiple stages
in your main job that you must go through. The work unit succeeds or fails in its entirety.

Job Restartability
The framework offers job restartability, not data restartability. However, we do make variables
available whose values are populated according to whether the previous execution was successful.
This way, the framework lets you know when to address data restartability within the work unit.
Everything within the work unit must be restartable.

PDI Project Setup and Lifecycle Management

Page 21

© Hitachi Vantara Corporation 2020. All Rights Reserved

Job restartability at a high level works in the following way:

• If the previous main job executed successfully, all work units will execute normally.
• If the previous job failed, you will skip the work units that executed successfully, rerun the

work unit that failed, and have a normal execution for those work units that did not yet get
executed in the previous run.

Tracking Current Status with the job_control Table
The framework uses a control table called job_control to track the current status of all jobs and
work units running in the solution. In addition to the status, this table also tracks additional metadata
like start and end times, the IP address and hostname where the job is running, and the process ID
on the operating system. You will also use this table for implementing your restartability solution that
will be discussed later.

Since this table keeps track of the current status, you know which work units of the main job were
executed successfully and which were not. When jobs need to restart because of an error in their
execution, they can skip those work units that already executed successfully, and rerun those that had
an error in their execution:

Table 12: job_control Table Status Information

Data Description
batch_id Unique ID of the job, providing a link to the PDI logging tables
jobname Name of the job
work_unit Name of the work unit
status Status of the job or work unit
project Project where the job is part of
starttime Start time of the job or work unit
logtime Last update time of record
ip_address IP address of server where job is running
hostname Host name of server where job is running
pid ID of Java process executing the PDI JVM

PDI Project Setup and Lifecycle Management

Page 22

© Hitachi Vantara Corporation 2020. All Rights Reserved

Let’s take a closer look at some of the jobs and transformations within the framework repository. The
content_pdi folder has the following subfolders:

Table 13: List of content_pdi Subfolders

Folder Description
control All jobs and transformations related to updating the job_control table

execution All jobs and transformations related to the execution of main jobs and work
units

utilities All jobs and transformations related to minor functionalities within the
framework

developer-
tools

All jobs and transformations that support the developer in using the
framework

Triggering Framework Job Executions with jb_launcher Job
One of the main jobs in your sales_dwh project is the jb_main_sales_dwh_staging job, which is
responsible for loading all CSV extracts into their dedicated staging tables. Each individual staging
transformation (customer and product) will be treated as a work unit.

Since your project uses variables defined in properties files in the configuration/config-pdi-
local/properties folder, you cannot simply run the main job since these variables values are not
yet known. Therefore, all main job executions within the framework are triggered through the
jb_launcher job (framework/content-pdi/execution/jb_launcher.kjb):

Figure 4: jb_launcher.kjb

The execution starts with the jb_launcher framework job, which has input parameters to define
which main job to execute: P_PROJECT_NAME and P_JOB_NAME.

jb_load_job_env (${FRAMEWORK_HOME}/utilities/jb_load_job_env.kjb) is executed to load
the job environment:

Figure 5: jb_load_job_env.kjb

PDI Project Setup and Lifecycle Management

Page 23

© Hitachi Vantara Corporation 2020. All Rights Reserved

This job creates V_JOB_NAME, and loads the following:

• framework.properties (${CONFIG_DIR}/properties/framework.properties)
• ${P_PROJECT_NAME}.properties

(${CONFIG_DIR}/properties/${P_PROJECT_NAME}.properties)
• ${V_JOB_NAME}.properties (if this file exists)

(${CONFIG_DIR}/properties/${V_JOB_NAME}.properties)

All these variables are loaded with their variable scope set to Valid in the root job.

jb_execute_job executes the actual jb_main_sales_dwh_staging main job once all variables are
loaded, calling the main job with ${CONTENT_HOME}/${P_JOB_NAME}.kjb. ${CONTENT_HOME}
points to the current project’s content-pdi folder. This variable is set by the project.properties
file.

Main Job Template
All main jobs within the project (similar to jb_main_sales_dwh_staging) will follow the same
template, using elements of the framework:

Figure 6: jb_main_sales_dwh.kjb

1. Execute tr_log_batch_id (${FRAMEWORK_HOME}/control/tr_log_batch_id.ktr).
This transformation guarantees that the following variables get created:

Table 14: Variables Created in tr_log_batch_id.ktr

Variable Description
V_BATCH_ID Main job batch_id (coming from job log table)
V_IP_ADDRESS The IP address of the host where the job gets executed
V_HOSTNAME The hostname of the host where the job gets executed
V_PID The process ID of the job that gets executed

2. Next, execute jb_job_start_actions, located at
(${FRAMEWORK_HOME}/control/jb_job_start_actions.kjb), to verify that the main job
can start.

PDI Project Setup and Lifecycle Management

Page 24

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 7: jb_job_start_actions.kjb

If the job can start, the main job status is updated with tr_upd_job_control_job
(${FRAMEWORK_HOME}/control/tr_upd_job_control_job.ktr). If it cannot start, the
execution of the main job is aborted.

When the main job is allowed to start, it executes the work units in sequence through the
jb_work_unit wrapper job (${FRAMEWORK_HOME}/execution/jb_work_unit.kjb).

Development Variable Workaround with jb_set_dev_env Job
Since the jobs and transformations of the actual DI solution make use of variables defined through
project and job properties files, this poses a problem during development.

These variables are only declared once the main job gets executed through the jb_launcher job,
and those properties files are loaded before the actual job gets executed. That means that during
development, those variables will not be available.

This is not the case with variables defined by kettle.properties, since these are available by
default in the PDI JVM. Therefore, you need a workaround during development.

This workaround is available as the jb_set_dev_env job (framework/content-pdi/developer-
tools/jb_set_dev_env.kjb).

Figure 8: jb_set_dev_env,kjb

PDI Project Setup and Lifecycle Management

Page 25

© Hitachi Vantara Corporation 2020. All Rights Reserved

This job requires three input parameters:

Table 15: Job Input Parameters

Parameter Description
P_PROJECT Name of the project
P_JOB_NAME Name of the job (no extension needed)
P_WORK_UNIT_NAME Name of the work unit (no extension needed)

The variable scope used to set these variables needs to be Valid in the Java Virtual Machine, or the
variables will not be available for all jobs and transformations in Spoon. This example where we set
development variables will most likely be the only place we will use this variable scope (valid in the
JVM).

Run this job as soon as you open Spoon, without having any other jobs or transformations open,
because only jobs or transformations that you open after running this job will pick up the newly
defined variables.

Framework Repository Structure
So far, we have introduced the basic functionality of the DI framework, and the next sections go into
more detail around the additional functionality of the framework. This overview shows the jobs and
transformations in the framework:

|-- framework
| |-- content-pdi
| | |-- execution
| | | |-- jb_launcher.kjb
| | | |-- jb_work_unit.kjb
| | |-- control
| | | |-- jb_job_start_actions.kjb
| | | |-- tr_job_start_check.ktr
| | | |-- tr_log_batch_id.ktr
| | | |-- tr_upd_job_control_job.ktr
| | | |-- tr_upd_job_control_work_unit.ktr
| | | |-- tr_work_unit_start_check.ktr
| | |-- utilities
| | | |-- jb_load_job_env.kjb
| | | |-- jb_load_work_unit_env.kjb
| | | |-- jb_mail.kjb
| | |-- developer-tools
| | | |-- jb_set_dev_env.kjb
| |-- bin
| |-- sql
| |-- documentation

PDI Project Setup and Lifecycle Management

Page 26

© Hitachi Vantara Corporation 2020. All Rights Reserved

Logging and Monitoring
Every process executed within PDI has feedback information related to workflow logging. This gives
details about what is happening during execution. Logging can:

• Provide relevant information whenever a process execution has an error, such as which
steps are failing, and trace with the main error description.

• Give information about a workflow if it has decision splits.
• Detect bottlenecks and substandard performance steps based on a procedure’s duration;

for example, stored execution times can be used to detect if a process is taking longer than
usual.

• Show the status of currently running processes. Logs provide information about when the
process started, where it is currently, and data related to its status.

• Provide traceability of what has been done, and when.

More information on logging can be found at Logging, Monitoring, and Performance Tuning for
Pentaho.

Pentaho Data Integration has two main options for logging: log entries (file logging) and database
logging. You can find details on these and other topics in the following sections:

• File Logging
• Database Logging
• Exception Handling
• Launching DI Solution Work Units with jb_work_unit Job

File Logging

For debugging purposes, we recommend that every main job’s execution redirect all logging
related to the execution of this job to a single log file per execution and per job.

In the DI framework, the log messages generated when a job is being executed are written to a file
located inside the log folder of the project. The project.properties LOG_HOME variable
determines the log folder’s location, while the name of the job and the time it is executed determine
the name of the log file.

This logging behavior is configured in the jb_launcher job at the jb_execute_job job entry’s
logging tab:

Figure 9: jb_launcher.kjb

https://support.pentaho.com/hc/en-us/articles/360001742172-Logging-Monitoring-and-Performance-Tuning-for-Pentaho
https://support.pentaho.com/hc/en-us/articles/360001742172-Logging-Monitoring-and-Performance-Tuning-for-Pentaho

PDI Project Setup and Lifecycle Management

Page 27

© Hitachi Vantara Corporation 2020. All Rights Reserved

Here is a closer look at the jb_execute_job job entry settings:

Figure 10: jb_execute_job Job Entry Logging Tab

Logging Levels
PDI lets you establish different levels of file logging verbosity depending on your needs:

Table 16: File Logging Verbosity

Logging Level Description

Nothing Logging is enabled but does not record any output

Error Only shows error lines

Minimal Only uses minimal logging, informing about workflow status

Basic Default setting: Shows information related to every step

Detailed For troubleshooting, gives detailed login output

Debug Detailed output for debugging, not for use in production

Row Level Logging at row level detail, generating a huge among of log output

In general, logging levels should be lower in a production or quality assurance (QA) environment, but
can be higher in a development or non-production environment.

Specify these levels when developing and running by using Spoon (PDI client), or by redirecting the
main job logging feedback to a dedicated log file for this solution.

For this framework’s file logging, the level used will always be set to Basic.

PDI Project Setup and Lifecycle Management

Page 28

© Hitachi Vantara Corporation 2020. All Rights Reserved

For Spoon, the logging output shows in the Spoon Logging tab. When running Spoon, you can change
the standard log level (Basic) with the Run Options:

Figure 11: Run Options

Redirect Output to Kettle Logging
Change the following kettle.properties variables to Y to redirect all output to PDI logging
destinations:

Table 17: kettle.properties Variables for Redirecting Output

Variable Value
KETTLE_REDIRECT_STDERR Y

KETTLE_REDIRECT_STDOUT Y

These variables are set to N by default. Turning them to Y gives STDERR and STDOUT more useful
information for logging and debugging errors.

Central Logging Directory
By default, the framework’s file logging is configured to be project specific. For example, all main jobs
of the sales_dwh project will be writing their logging output to the sales_dwh/log folder. If you
prefer to have your file-logging configured in a central manner, where all main jobs are logging to the
same top-level folder, you have the option to do so via configuring the framework’s logging variables,
LOG_DIR (kettle.properties) and LOG_HOME (project.properties):

PDI Project Setup and Lifecycle Management

Page 29

© Hitachi Vantara Corporation 2020. All Rights Reserved

Default project-specific logging configuration:

• LOG_DIR=${ROOT_DIR}

• LOG_HOME=${LOG_DIR}/sales_dwh/log

Central logging configuration example:

• LOG_DIR=${ROOT_DIR}/log

• LOG_HOME=${LOG_DIR}/sales_dwh

Database Logging
PDI is also capable of writing structured logging feedback to log tables. The framework redirects
structured database (DB) logging information to a central pdi_logging database.

The DB logging configurations are applied globally at the kettle.properties level. This allows you
to specify the logging tables that each environment uses.

The kettle.properties variables used by the framework are the following:

Table 18: kettle.properties Variables Used by Framework

Variable Type Variable Description

pdi_logging
Database
Connection
Variables

PDI_LOGGING.HOST
PDI_LOGGING.PORT
PDI_LOGGING.DB
PDI_LOGGING.SCHEMA
PDI_LOGGING.USER
PDI_LOGGING.PASS

These variables are used in the
shared.xml database connection
definition of the pdi_logging connection

Job DB Logging
Variables

KETTLE_JOB_LOG_DB The Job log default database connection
for all jobs

KETTLE_JOB_LOG_SCHEMA The Job log default schema for all jobs

KETTLE_JOB_LOG_TABLE The Job log default table for all jobs

Transformation
DB Logging
Variables

KETTLE_TRANS_LOG_DB The transformation log default database
connection for all transformations

KETTLE_TRANS_LOG_SCHEMA The transformation log default schema for
all transformations

KETTLE_TRANS_LOG_TABLE DB The transformation log default table for all
transformations

PDI Project Setup and Lifecycle Management

Page 30

© Hitachi Vantara Corporation 2020. All Rights Reserved

Variable Type Variable Description

Channel DB
Logging
Variables
Provide
hierarchical
information
between job and
transformation
logging

KETTLE_CHANNEL_LOG_DB
The channel log default database
connection for all transformations and
jobs

KETTLE_CHANNEL_LOG_SCHEMA The log default schema for all
transformations and jobs

KETTLE_CHANNEL_LOG_TABLE The log channel default table for all
transformations and jobs

KETTLE_TRANS_LOG_SCHEMA The transformation log default schema for
all transformations

By specifying this at a global kettle.properties level, you do not need to configure those details
anymore at each job or transformation with its logging transformation or job properties. You can leave
those settings blank.

We also recommend you use the following additional database logging kettle.properties
configuration:

Table 19: Database Logging kettle.properties Configuration

Variable Value
KETTLE_LOG_SIZE_LIMIT 100

This makes sure only the last 100 lines of the console logging get written to the LOG_FIELD of the job
and transformation database logging tables. This should be fine for the database logging, since all
logging output is available for debugging in the main job file logging.

Job Database Logging
One of the advantages of using job database logging is that this gives you a unique batch ID (ID_JOB
column) that is increased by one for each run of a job.

In the framework, you reuse this unique batch ID in both the job_control table (batch_id column)
and the job file logging. Having this unique batch ID in all those places gives you a way of connecting
them, making debugging easier. You could also reuse this ID to attach them to records in your tables
to associate the record with the job that inserted or updated the record.

Table 20: Unique Batch ID

Field name Description

ID_JOB The batch ID. It's a unique number, increased by one for each run of a job

In the main job’s job properties, make sure to check the Pass batch ID? checkbox to make this
batch_id available to your jobs and transformations. This is the only place where you need to do
this.

PDI Project Setup and Lifecycle Management

Page 31

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 12: Main Job Properties

You can store this batch ID in a variable so that it can be reused easily within the framework. Do this
with the tr_log_batch_id transformation, which is the first transformation that gets executed
within the main job (see jb_main_sales_dwh.kjb), located at (framework/content-
pdi/control/tr_log_batch_id.ktr).

Figure 13: tr_log_batch_id.ktr

Transformation Database Logging
For both the job and channel database logging, you can keep the default configurations at the logging
tab of the job or transformation properties.

For the transformation database logging, however, you have the option to configure additional logging
detail by specifying a step name for the following logging fields. Transformation logging is at the level
of the transformation and the LINES_ metrics are at the level of a step; therefore, a step name is
required:

Figure 14: Transformation Database Logging

PDI Project Setup and Lifecycle Management

Page 32

© Hitachi Vantara Corporation 2020. All Rights Reserved

Table 21: Step Names for Logging Fields

Field Name Description Step Name

LINES_READ The number of lines read by the
specified step

Only used when applicable

LINES_WRITTEN The number of lines written by the
specified step

Only used when applicable

LINES_UPDATED The number of update statements
executed by the specified step

The main output step should be
used here when applicable

LINES_INPUT

The number of lines read from disk or
the network by the specified step
This is input from files, databases, and so
on.

The main input step should be
used here

LINES_OUTPUT

The number of lines written to disk or
the network by the specified step.
This is input to files, databases, and so
on.

The main output step should be
used here

LINES_REJECTED The number of lines rejected with error
handling by the specified step

Only used when applicable

For example, by specifying the step name for those metrics, you can capture how many records you
read with your Text file input step and how many records you wrote to your staging table with the
Table output step during the execution of your transformation.

Configuring these step names makes that additional information available in your transformation log
table.

Logging Concurrency
For database logging to work correctly, PDI needs to generate a unique integer ID at the very start of
the transformation or job. This batch ID will then be used in various places throughout the life of the
transformation or job.

However simple this may seem, it can be surprisingly tricky to use a database to generate a unique
ID. The problem is mostly caused by inadequate or incorrect locking by the various databases. To
make matters worse, every database behaves differently when it comes to locking tables. Configuring
Log Tables for Concurrent Access describes two options on configuring the logging tables for
concurrent access.

If you don’t set this up, there’s a slight chance you can run into table deadlocks if two jobs or
transformations execute at the same moment and lock the same logging table. Over enough time, it
will happen, and it will cause the job or transformation to hang until you manually kill it.

https://wiki.pentaho.com/display/EAI/Configuring+log+tables+for+concurrent+access
https://wiki.pentaho.com/display/EAI/Configuring+log+tables+for+concurrent+access

PDI Project Setup and Lifecycle Management

Page 33

© Hitachi Vantara Corporation 2020. All Rights Reserved

Exception Handling
Proper error and exception handling should be part of your DI solution design from the early stages.
What happens when something in the DI process fails? The exact answer depends on the source of
failure and whether you are in control or not.

Error handling in the framework and the actual DI solution can take many shapes and forms:

• Concurrency Checks
• Dependency Management
• Job Restartability
• Data Restartability
• Transformation and Job Error Handling

Concurrency Checks
If the main job is still running when the next execution is scheduled, you do not want to launch the
job again. This conflict can occur due to abnormal circumstances, such as having more data to process
than normally. The framework has concurrency checks in place.

A concurrency check is performed with the jb_job_start_actions job that is
(${FRAMEWORK_HOME}/control/jb_job_start_actions.kjb) executed as part of the main job.

For example, here is the main job:

Figure 15: Main Job

Next, here is the jb_job_start_actions job from within the main job:

Figure 16: jb_job_start_actions.kjb

PDI Project Setup and Lifecycle Management

Page 34

© Hitachi Vantara Corporation 2020. All Rights Reserved

Finally, here is the tr_job_start_check transformation from within the jb_job_start_actions
job:

Figure 17: tr_job_start_check

The logic contained in the jb_job_start_actions job is the following:

IF last execution status IS NULL THEN start new job run

As a result, three variables get populated, valid within the main job:

Table 22: Variables Set in jb_job_start_actions

Variable Value
V_JOB_START_FLAG Y

V_PREVIOUS_JOB_EXECUTION_STATUS NULL

V_PREVIOUS_JOB_BATCH_ID The batch_id retrieved from the job_control table

This only happens the first time a job runs. At this point there is no last execution status available in
the job_control table.

IF last execution status = 'finished' OR 'error' THEN start new job run

Table 23: Variables Set if 'Finished' or 'Error'

Variable Value
V_JOB_START_FLAG Y

V_PREVIOUS_JOB_EXECUTION_STATUS finished | error

V_PREVIOUS_JOB_BATCH_ID The batch_id retrieved from the job_control table

IF last execution status = 'running' THEN

Table 24: Variables Set if 'Running'

Variable Value
V_JOB_START_FLAG N

V_PREVIOUS_JOB_EXECUTION_STATUS running

V_PREVIOUS_JOB_BATCH_ID The batch_id retrieved from the job_control table

PDI Project Setup and Lifecycle Management

Page 35

© Hitachi Vantara Corporation 2020. All Rights Reserved

The main job will only start if V_JOB_START_FLAG = 1. As a result, the job_control table indicates
this new status.

For example, for the jb_main_sales_dwh_staging, it will look like this (only displaying a subset of
the columns):

Table 25: job_control Table Columns
Jobname work_unit status project

jb_main_sales_dwh_staging job-
checkpoint running framework

Dependency Management
Dependencies in the main job are managed by having the work units executed in a specific sequence.
The next work unit can only start if the previous was successful.

Job Restartability
Job failures should only require a simple restart of the main job. When a main job fails, the scheduler
will only need to trigger a new execution for the framework to take care of restarting the job (more
information on restarting is available in Restartability in PDI in the Pentaho Data Integration library).
This comes down to the following logic. Remember the concepts that we discussed in the DI
Framework introduction section:

• Main job: The job that is being scheduled
• Work unit: The jobs or transformations that are being executed in sequence by the main job

Work units are checkpoints at which restartability gets implemented:
• If the previous main job executed successfully (V_PREVIOUS_JOB_EXECUTION_STATUS =

'finished'), all work units will execute normally.
• If the previous job failed (V_PREVIOUS_JOB_EXECUTION_STATUS = 'error'), you skip the

work units that executed successfully, rerun the work unit that failed, and have a normal
execution for those work units that did not yet get executed in the previous run.

A work unit could be a transformation:

Figure 18: Transformation Work Unit

https://support.pentaho.com/hc/en-us/articles/360000307943-Pentaho-Data-Integration

PDI Project Setup and Lifecycle Management

Page 36

© Hitachi Vantara Corporation 2020. All Rights Reserved

A work unit could also be a job that executes one or more jobs or transformations, like this:

Figure 19: Job Work Unit

In both examples, restartability only gets implemented at the work unit level:

• If the main job fails because work unit 1 fails, in the next main job run, work unit 1 will be
restarted and work unit 2 will have a normal run.

• If the main job fails because work unit 2 fails, in the next main job run, work unit 1 will not
execute because it already executed successfully and work unit 2 will be restarted.

• If the main job executed successfully, in the next main job run, both units will have a normal
run.

• The work unit can also be configured to start independent of the previous status.

You saw in the previous section that the jb_job_start_check job checks the last execution status
of the job before it decides if it can start again or not. This check populates the following variables:

Table 26: jb_job_start_check Variables

Variable Value
V_JOB_START_FLAG Y | N

V_PREVIOUS_JOB_EXECUTION_STATUS finished | error | running

V_PREVIOUS_JOB_BATCH_ID The batch_id retrieved from the job_control table

In a similar fashion, you also have a work unit start check that gets executed before the execution
of every work unit. Before we explain the work unit start check, let’s have a look at how you keep track
of the status of main job and its work units in the job_control table.

The main job can have one of three statuses:

Table 27: Main Job Status

Status Description
running The main job is still running.
finished All work units finished successfully, so the complete main job finished successfully.
error A particular work unit failed, so the complete main job failed.

PDI Project Setup and Lifecycle Management

Page 37

© Hitachi Vantara Corporation 2020. All Rights Reserved

A work unit can have one of four statuses:

Table 28: Work Unit Status

Status Description
running The work unit is still running.

success The work unit completed successfully, but the main job is still executing other work
units.

error The work unit failed and also made the job fail.

finished This work unit together with all other work units finished successfully, and therefore
the complete main job finished successfully.

Notice the important difference between success and finished. Success means you are
only partially done, while finished means the complete job finished successfully.

Let’s focus on the first example of a work unit, where it is just a transformation. In it, the main job
executes two work units, both transformations: work unit 1 and work unit 2.

If work unit 1 failed, job_control will look like this:

Table 29: job_control for Work Unit 1 Failure
jobname work_unit status

main job 1 job-checkpoint error

main job 1 work unit 1 error

main job 1 work unit 2 NULL

Notice you have a separate job_control record to keep track of the main job status. This
record is indicated by work_unit = 'job-checkpoint'. All other records keep track of the
work unit status.

If work unit 2 failed, job_control will look like this:

Table 30: job_control for Work Unit 2 Failure
jobname work_unit status

main job 1 job-checkpoint error

main job 1 work unit 1 success

main job 1 work unit 2 error

If both work units execute successfully, it will look like this:

Table 31: job_control for Successful Work Unit Execution
jobname work_unit status

main job 1 job-checkpoint finished

main job 1 work unit 1 finished

main job 1 work unit 2 finished

PDI Project Setup and Lifecycle Management

Page 38

© Hitachi Vantara Corporation 2020. All Rights Reserved

Returning to the work unit start check that gets executed before the execution of every work unit: This
functionality is implemented by the tr_work_unit_start_check transformation (framework/
/control/tr_work_unit_start_check.ktr).

Figure 20: tr_work_unit_start_check Transformation

The logic contained in the tr_work_unit_start_check transformation is the following:

IF last execution status IS NULL THEN start new work unit run

This only happens the first time a work unit runs. At this point there is no last execution status
available. As a result, two variables get populated, valid within the work unit:

Table 32: Variable Population with Last Execution Status Null

Variable Value
V_WORK_UNIT_START_FLAG Y

V_PREVIOUS_WORK_UNIT_EXECUTION_STATUS NULL

IF last execution status = 'finished' OR 'error' THEN start new work unit run

This happens when the complete main job finished successfully or errored. In case of main job error,
it was this work unit that made the job fail.

Table 33: Variable Population with Last Execution Status 'Finished' or 'Error'

Variable Value
V_WORK_UNIT_START_FLAG Y

V_PREVIOUS_WORK_UNIT_EXECUTION_STATUS finished | error

IF last execution status = 'success' THEN do not start the work unit

This happens when the complete main job did not finish successfully, but this work unit did. Therefore,
in the next run, this work unit can be skipped.

PDI Project Setup and Lifecycle Management

Page 39

© Hitachi Vantara Corporation 2020. All Rights Reserved

Table 34: Variable Population with Last Execution Status 'Success'

Variable Value
V_WORK_UNIT_START_FLAG N

V_PREVIOUS_WORK_UNIT_EXECUTION_STATUS success

The work unit has one special mode of operation. When P_CHECK_START = 'N', you will always
execute the work unit, independent of its previous execution status.

Data Restartability
When the main job fails at a certain work unit, the failed work unit might already have processed some
data before it failed. For that work unit to be restarted as part of the job restartability functionality, it
has to clean up the previous execution before rerunning the work unit, by deleting the previous loaded
records from the output table or removing output files from an output directory.

Because of both the job and work unit start check, the developer working on the actual work unit
part of the DI solution has the following variables available:

Table 35: Variables from Job and Work Unit Start Checks

Variable Value
V_JOB_START_FLAG Y | N

V_PREVIOUS_JOB_EXECUTION_STATUS NULL | finished | error | running

V_PREVIOUS_JOB_BATCH_ID The batch_id retrieved from the
job_control table

V_WORK_UNIT_START_FLAG Y | N

V_PREVIOUS_WORK_UNIT_EXECUTION_STATUS NULL | success | finished | error

The framework does not provide any data restartability itself, but makes these variables available so
the developer can use them to decide if a cleanup is needed before the work unit can run.

You would probably just take the V_PREVIOUS_WORK_UNIT_EXECUTION_STATUS into account. Based
on that value, you might need to clean up the records previously processed and identified in the tables
by the V_PREVIOUS_JOB_BATCH_ID value in the batch_id column, if this value was loaded in the
target tables.

Depending on the design of the work unit, this cleanup looks different:

• If the work unit is a transformation or job that was made database transactional, no cleanup
would be needed and a rerun simply reprocesses the same data.

• If this was not the case, it might be that the cleanup involves deleting previously loaded
records before starting the load in case an error happened.

When you make a job or transformation database transactional (rollback), changes to a data
source occur only if a transformation or job completes successfully. This provides you with
automated rollback behavior.

https://help.pentaho.com/Documentation/9.0/Products/Transactional_databases_and_job_rollback

PDI Project Setup and Lifecycle Management

Page 40

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 21: Make the job database transactional Checkbox

Figure 22: Make the transformation database transactional Checkbox

Transformation and Job Error Handling
There could potentially be many things in a job or transformation that can go wrong, some of which
you are in control of, others of which are outside your control.

When you can catch the error, you can write specific messages to the log or abort the job or
transformation when needed. Most steps in a transformation support error handling. You can do
proactive checks (such as, does the file exist?), you can implement conditional logic (such as success
or error hops in a job, filter logic in a transformation), you can send error mails, and so forth.

When you cannot catch the error (for example, when the server goes down), you can always rely on
the job and data restartability functionality to clean up the faulty data and rerun the job.

The following error handling options are available for you in PDI:

• Write to log job entry or transformation step: This allows you to write specific error
messages to the log. This can be important for the integration with external monitoring
applications.

• Abort job entry or transformation step: This aborts the job or transformation based on a
specific logic.

• Transformation step error handling can write faulty records to a different stream to
handle them separately if needed.

• Main job error email: This writes an email to the admin team when something goes wrong
and needs their attention.

PDI Project Setup and Lifecycle Management

Page 41

© Hitachi Vantara Corporation 2020. All Rights Reserved

Proactive checks in a job can be used where needed:

Figure 23: Job Conditions

The framework uses these options all the time. Each main job that is run generates its individual job
log file, and those generated job run log files are saved in the same log file directory. So that debugging
can happen in an effective manner, all log messages (write to log job entry and transformation step,
abort job entry or transformation step) follow the same message format:

*** ERROR: <DETAILS> ***

These are actual errors that happened and caused the job to fail. If this happened, you caught the
error appropriately and logged the error details accordingly

In these cases, <DETAILS> holds all the information needed to make a good log subject. When you
are using variables or parameters, include their name as well for ease of reference. For example:
P_JOB_NAME = ${P_JOB_NAME}. Sometimes, no variables or parameters are available, so the details
will be hardcoded.

*** INFO: <DETAILS> ***

These are informational messages written to the log for debugging purposes.

*** WARNING: <DETAILS> ***

Warning info messages do not cause the ETL to fail, but prompt for action.

PDI Project Setup and Lifecycle Management

Page 42

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 24: Abort Job Message Setting

It is also possible to have the tr_upd_job_control_job job (framework/content-
pdi/control/tr_upd_job_control_job.ktr) send out an error mail when the main job errors.
This behavior can be configured with the following framework.properties:

Table 36: framework.properties for Error Mail

Variable Description

SMTP_SERVER Connection Variables

SMTP_SERVER.HOST
SMTP_SERVER.PORT
SMTP_SERVER.USER
SMTP_SERVER.PASS

ERROR_MAIL Variables

ERROR_MAIL.SEND_FLAG=0 | 1
ERROR_MAIL.SENDER.ADDRESS=support@etl.com
ERROR_MAIL.SENDER.NAME=ETL Admin
ERROR_MAIL.DESTINATION.ADDRESS=
ERROR_MAIL.SUBJECT_PREFIX=ETL ERROR

For example, if the jb_main_sales_dwh_staging job experiences an error during execution:

Figure 25: ETL ERROR Message

PDI Project Setup and Lifecycle Management

Page 43

© Hitachi Vantara Corporation 2020. All Rights Reserved

Then setting ERROR_MAIL.SEND_FLAG = 1 would send the following error mail:

Figure 26: Error Mail Example

Launching DI Solution Work Units with jb_work_unit Job
One of the last framework artifacts that needs an introduction is the jb_work_unit job
(framework/content-pdi/execution/jb_work_unit.kjb) that acts as a wrapper to launch the
work units of the actual DI solution in a controlled manner.

This job builds on Diethard Steiner’s example in his Restartable Jobs blog post.

Use the jb_work_unit job to call the actual work units within the main job in sequence. Consider the
following jb_main_sales_dwh_staging job:

Figure 27: Main Job Calling jb_work_unit Job

http://diethardsteiner.github.io/pdi/2017/07/21/PDI-Restartable-Job.html

PDI Project Setup and Lifecycle Management

Page 44

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 28: jb_work_unit Job

The jb_work_unit job orchestrates the execution of a single work unit. It accepts the following
input parameters:

Table 37: jb_work_unit Job Input Parameters

Parameter Description Example

P_CHECK_START Y|N, controls if the framework should
perform the work unit start check

Y (this is the default if no
values gets provided)

P_PROJECT_NAME Name of the project the job is part of sales_dwh

P_WORK_UNIT_NAME File name of the transformation or job to
be executed

tr_stg_customer

P_WORK_UNIT_PATH Subfolder structure from CONTENT_HOME staging

P_WORK_UNIT_TYPE job | transformation transformation

P_IS_LAST_UNIT Y|N last work unit on job N

PDI Project Setup and Lifecycle Management

Page 45

© Hitachi Vantara Corporation 2020. All Rights Reserved

The job then functions in this way:

1. Correct environment variables for the work unit’s execution are then loaded through
jb_load_work_unit_env, and after that, the job checks to see if it needs to perform a start
check using P_CHECK_START.

2. If a start check needs to be performed, the job checks if the work unit can be started using
the tr_work_unit_start_check transformation (framework/content-
pdi/control/tr_work_unit_start_check.ktr). This can lead to three actions,
dependent on the last execution status of the work unit:

a. finished: work unit will have a normal execution
b. success: work unit will be skipped
c. error: work unit will be rerun

3. When the work unit can start, you register the work unit execution start in the job_control
table with the tr_upd_job_control_work_unit transformation (framework/content-
pdi/control/tr_upd_job_control_work_unit.ktr).

4. Execute the actual work unit job or transformation (P_WORK_UNIT_NAME,
P_WORK_UNIT_TYPE).

5. Register the work unit execution status (success or error) with the
tr_upd_job_control_work_unit transformation.

6. When the work unit fails, the main job stops and its status gets updated to error by the
tr_upd_job_control_job job (framework/content-
pdi/control/tr_upd_job_control_job.ktr).

7. When the work unit succeeds, launch the next work unit in the main job.
8. When the last work unit (P_IS_LAST_UNIT = Y) executes successfully, mark the main job

and its work units as finished in the job_control table with the
tr_upd_job_control_work_unit and tr_upd_job_control_job transformations.

PDI Project Setup and Lifecycle Management

Page 46

© Hitachi Vantara Corporation 2020. All Rights Reserved

Using the DI Framework
You have seen the main functionality of the DI framework, including:

• It will take care of a controlled execution of a main job, a workflow of work units (jobs or
transformations) in sequence.

o When a work unit fails, the complete jobs fails.
o Regular executions happen if the previous load was successful (indicated by the

'finished' status) or if this is the first time that this job gets executed (no record is
available yet in the job_control table).

• It will restart the main job.
o This happens if the previous run of the job errored (status = 'error').
o If work units executed successfully in the previous run, they will be skipped in this

run.
o If a work unit failed in the previous run, it will be restarted. The framework makes

the previous execution status of the work unit available to the work unit through the
V_PREVIOUS_WORK_UNIT_EXECUTION_STATUS ('error'). It is up to the actual work
unit that gets executed to implement the actual data restartability.

• Work units can be a single transformation or a job that groups together other jobs and
transformations.

o Restartability is at the level of the work unit.
o When your work unit is a job, restartability is at the level of that job in its entirety.

The complete job needs to execute successfully for the work unit to be successful.
When the previous execution errors, the complete job will be restarted.

• Executing work units in parallel is not possible.
o When such behavior is needed, this can be dealt with by the scheduler: scheduling

multiple jobs in parallel.

Now, let’s look at how you put this framework to work in your project. When the DI development team
starts to develop the actual DI solution, they will develop the actual work units and the main jobs that
execute those work units. When working on those artifacts, they need to integrate with the DI
framework and there are some specific rules to be followed for this to happen smoothly. This section
describes those specific integration points.

You can find more information on these topics in the following sections:

• Setting Up the Local Environment
• Loading the Development Environment
• Referencing Other DI Artifacts
• Creating a Main Job
• Writing to Log Format
• Optimizing Database Logging
• Debugging
• Changing Execution to Local Filesystem or Pentaho Repository

PDI Project Setup and Lifecycle Management

Page 47

© Hitachi Vantara Corporation 2020. All Rights Reserved

Setting Up the Local Environment
Your project content and configuration are stored in Git. In order to set up your local development
environment, you need to have access to a database(s) (local or remote) to hold the pdi_control,
pdi_logging, and sales_dwh data. The create statements for the pdi_control and pdi_logging
tables can be found in framework/sql/framework.sql.

Then, follow these steps:

1. Create the project folder (for example, C:\pentaho\projects) on your local filesystem.
2. Clone the following Git repositories to your local project folder:

o sales_dwh
o sales_dwh-configuration
o framework

3. The tables for sales_dwh are automatically created by the solution. Check that you have
these tables per connection:

o pdi_control
 job_control

o pdi_logging
 log_channel
 log_job
 log_tran

o sales_dwh
 stg_customer
 stg_product

4. Make the following changes to the pdi-config-local environment configurations:

The config-pdi-local configuration will be different for each developer, so this
configuration will never be committed to Git. A master version that developers can use as a
starting point will be available.

o env.conf (Windows or Linux version)
 PENTAHO_HOME: Point this to your local Pentaho installation folder.
 KETTLE_CLIENT_DIR: Optional. Leave blank or point this to your local Kettle

client installation folder if this is different from ${PENTAHO_HOME}/design-
tools/data-integration.

 PENTAHO_JAVA_HOME: Point this to your local Java installation folder.
 PENTAHO_DI_JAVA_OPTIONS: Set the correct Java memory settings.

o .kettle/kettle.properties

 All variables values that contain directories must be correctly configured.
 PDI_LOGGING connection properties must be set up.

o .kettle/shared.xml

 Connection definitions if a different database than PostgreSQL is used.
o properties/framework.properties

 PDI_CONTROL connection properties
o properties/sales_dwh.properties

 SALES_DWH connection properties

PDI Project Setup and Lifecycle Management

Page 48

© Hitachi Vantara Corporation 2020. All Rights Reserved

Loading the Development Environment
DI developers need to start the right Spoon for the right environment, avoiding using incorrect
variables. Starting development activities on the local environment means starting the sales_dwh-
configuration/config-pdi-local/spoon.bat or spoon.sh file.

Since only global variables are part of the kettle.properties file, and project and job variables are
introduced in the project and job.properties, these variables are not by default available to
Spoon. Therefore, the moment that you open Spoon, you must run the jb_set_dev_env job
(/framework/content-pdi/developer-tools/jb_set_dev_env.kjb).

This job accepts the following variables:

Table 38: Variables for jb_set_dev_env Job

Parameter Description
P_PROJECT Name of the project
P_JOB_NAME Name of the job (no extension needed)
P_WORK_UNIT_NAME Name of the work unit (no extension needed)

Depending on the variable values, this job will load the framework, common, project, job (if it exists),
and work unit properties (if they exist), and initiate the V_JOB_NAME variable.

Referencing Other DI Artifacts
When developing work units (job or transformation) you might need to reference other artifacts.

If this is the case, do not use the ${Internal.Entry.Current.Directory} variable, but use the
following variables made available by the framework. When working on jobs or transformations of a
specific project (sales_dwh, data_export), you have variables available that point to a specific
location within the project folder (such as sales_dwh).

Table 39: Variables to Reference Other DI Artifacts

Variable Description
${CONTENT_HOME} sales_dwh/content-pdi

${SQL_HOME} sales_dwh/sql

${FILE_MGMT_HOME} sales_dwh/file-mgmt

PDI Project Setup and Lifecycle Management

Page 49

© Hitachi Vantara Corporation 2020. All Rights Reserved

Creating a Main Job
Remember that the main job orchestrates the execution of the work units. For this to happen in
combination with the framework, the main job needs to follow a certain template.

The jb_main_job_template job is available at framework/content-pdi/developer-
tools/jb_main_job_template.kjb.

Figure 29: jb_main_job_template Job

Remember to always start your main job with the tr_log_batch_id transformation and the
jb_job_start_actions job.

Writing to Log Format
See the Exception Handling section to understand the format that must be used for writing a message
to the log and how to do this.

Optimizing Database Logging
Database logging is done automatically since the framework uses the kettle.properties database
logging variables to define this at a global level. However, you can optimize the database logging for
the transformations by adding the Step Name configuration for the LINES_ metrics.

Debugging
We have talked about database logging being part of the framework. Next to this, the framework also
writes all execution details of a single job run to a logging file in its LOG_HOME folder.

This log file has the following filename format: ${LOG_HOME}/${P_JOB_NAME}_yyyyMMdd

_HHmmss.log, so for example: jb_main_sales_dwh_staging_20180705_104735.log.

This file contains the PDI logging defaults based on the logging level selected, together with all
messages written to the log with the framework or by using the Write to log and Abort entries or
steps.

PDI Project Setup and Lifecycle Management

Page 50

© Hitachi Vantara Corporation 2020. All Rights Reserved

When your job or work unit halts for unexpected reasons, consult this logging file first either by
checking the logging tab in Spoon, or by consulting the file directly.

Also, note that the job_control is updated with the job and work unit status. When testing locally,
you can play with the status in that table to influence the job and work unit behavior.

You can also delete all records in the job_control table since they would be recreated when the job
cannot find the records.

Changing Execution to Local Filesystem or Pentaho Repository
The framework allows for a local execution with Spoon, working file-based, and a Pentaho Server
execution using the Pentaho Repository. Through the different framework variables available, it even
allows for a different repository structure in Git (file-based) versus the Pentaho Repository.

Imagine the following setup: you have the same content, both file-based and in the Pentaho
Repository, but a different structure is used.

File-based in the local environment: C:\pentaho\projects

|-- sales_dwh-configuration

| |-- config-pdi-local

|-- sales_dwh

| |-- content-pdi

| | |-- tr_my_ktr_sales_dwh.ktr

The resulting variables to support this setup would look like this:

Table 40: Variables for File-Based Solution in Local Environment

File Variable Description

kettle.properties

ROOT_DIR C:/pentaho/projects

CONTENT_DIR C:/pentaho/projects/

CONFIG_DIR ${ROOT_DIR}

PROJECT_ENV config-pdi-local

sales_dwh.properties CONTENT_HOME ${CONTENT_DIR}/sales_dwh/content-pdi

Pentaho Repository in the dev environment: /public/

|-- sales_dwh
| |-- tr_my_ktr_sales_dwh.ktr

PDI Project Setup and Lifecycle Management

Page 51

© Hitachi Vantara Corporation 2020. All Rights Reserved

The following variables will solve this change in structure by abstracting the location:

Table 41: Variables for Pentaho Repository in the Development Environment

File Variable Description

kettle.properties

ROOT_DIR

C:/pentaho/projects

This always points to a location on the filesystem since
only the content-pdi part of the projects will move
to the Pentaho Repository. Things like
configuration or sales_dwh/file-mgmt
always stay on the filesystem.

This variable, included for completeness, is
actually not part of the
kettle.properties file and is set in the
framework/bin/init.sh/bat script.

CONTENT_DIR /public

CONFIG_DIR ${ROOT_DIR}

PROJECT_ENV config-pdi-dev

sales_dwh.properties CONTENT_HOME ${CONTENT_DIR}/sales_dwh

As a result, the solution can always reference the tr_my_transformation_sales_dwh.ktr
transformation in the same way: ${CONTENT_HOME}/tr_my_transformation_sales_dwh.ktr.

Documenting Your Solution
ETL documentation to help solution development and support should be kept under the
corresponding project folder in Git (such as sales_dwh/documentation). We recommend that you
write the documentation in Markdown notation to make it light and easy to read.

You should version your documentation the same way that you version your DI artifacts.

Developers should also add comments with notes in each job or transformation. These notes allow
anyone reviewing the code, or taking over support of it, to understand decisions behind the logic or
changes. Developers can apply different colors to the notes depending on the type of note.

Automating Deployment
As your project moves through its lifecycle, the deployment process will make sure all necessary
project artifacts become available on the required Pentaho Server machines.

In a situation such as our example, when you deploy a test or production release to the Pentaho
Server machines, the Git repositories will be checked out to the local filesystem of these machines.
Only the jobs and transformations from the etl repository end up in the Pentaho Repository; all other
artifacts stay on the filesystem so that they can be referenced from the jobs and transformations at
execution time.

https://www.markdownguide.org/

PDI Project Setup and Lifecycle Management

Page 52

© Hitachi Vantara Corporation 2020. All Rights Reserved

For example, a job might reference a shell script to assist the job in executing a specific task. This script will
be available from the filesystem and not the Pentaho Repository.

Figure 30: Example Basic Automation Flow

The PDI toolkit offers multiple functionalities that can support and automate your deployment
process.

You can upload content to the Pentaho Repository from the command line using the import-
export.bat/sh script available in the pentaho-server directory. See the Command Line
Arguments Reference to get a complete overview of all command line arguments available.

An example of a deployment using this script is available at configuration/deploy-

pdi/deploy.bat. This script deploys a <project>.zip file (all content from the content-pdi
folder zipped) and asks for the target environment. It uses the DI_SERVER_ variables from the
configuration files (config-pdi-<env>) of the target environment to get the Pentaho Server
credentials to perform the upload.

Figure 31: Example Output from deploy.bat Script

Another possibility for automating the deployment is using the Pentaho Server’s File Management
APIs. The tr_deploy.ktr transformation (configuration/deploy-pdi/tr_deploy.ktr) shows
an example of deploying using the REST API with PDI.

https://help.pentaho.com/Documentation/9.0/Setup/Command_line_arguments_reference
https://help.pentaho.com/Documentation/9.0/Setup/Command_line_arguments_reference
https://help.pentaho.com/Documentation/9.0/Developer_center/REST_API_Reference/File_Management
https://help.pentaho.com/Documentation/9.0/Developer_center/REST_API_Reference/File_Management

PDI Project Setup and Lifecycle Management

Page 53

© Hitachi Vantara Corporation 2020. All Rights Reserved

Once you deploy the project jobs and transformations to the Pentaho Repository, the shared.xml
file will no longer be used to hold the database connections. Instead, the connection information will
then be stored in the Pentaho Repository.

The deployment process does not use the information from the shared.xml file, but it uses the
connection information that is stored as a backup within the transformation and job’s XML definition.

Once a connection is created within the Pentaho Repository, it does not get overwritten
automatically by the automated deployment. if you change the project’s connection details, you
will need to update the Pentaho Repository connection manually or use the REST API to do so.

Creating a Development Guidelines Handbook
When you are working on a DI project with multiple developers collaborating on the final DI solution,
we recommend creating a Development Guidelines handbook.

This handbook should include guidelines and standards that must be followed by the entire team
when developing the solution, and that can be implemented in a set of QA checks on the final solution.

The handbook must also include naming standards. The framework also follows naming conventions
for its job and transformation names and job entry and step names based on Naming Standards for
PDI in the PDI document library.

https://support.pentaho.com/hc/en-us/articles/360000307943-Pentaho-Data-Integration

PDI Project Setup and Lifecycle Management

Page 54

© Hitachi Vantara Corporation 2020. All Rights Reserved

DI Framework Demo
Configure and run the demo to see the framework in action using a sample project. Configuring the
demo is easy, and all steps are documented in the Using the DI Framework section.

Once configured, you can launch the jb_main_sales_dwh_staging job with the jb_launcher job
(framework/content-pdi/execution/jb_launcher.kjb). Consult the job_control table to see
what a successful execution looks like.

Test job restartability by triggering an error during execution:

1. Open the tr_stg_customer transformation (sales_dwh/content-
pdi/staging/tr_stg_customer.ktr).

2. Enable the hop coming from the customers-with-errors.csv step.
3. Make sure to disable the other hop.
4. Run this once and see the result of the failing job in the job_control table.
5. Revert back to the customer.csv input step and run the job again with the launcher job.

Figure 32: tr_stg_customer.ktr

PDI Project Setup and Lifecycle Management

Page 55

© Hitachi Vantara Corporation 2020. All Rights Reserved

Extending the Current DI Framework

Figure 33: Project Setup Summary

It is important to remember that the DI framework suggested in this document only provides a
starting point for your DI projects. The realities in your project might require you to make changes to
the framework’s current behavior or to extend its functionality in general.

You see there is no such thing as a one-size-fits-all for this. However, it should provide you with a good
starting point, already considering multiple best practices that set your project up for success.

PDI Project Setup and Lifecycle Management

Page 56

© Hitachi Vantara Corporation 2020. All Rights Reserved

In your sample setup, you had two projects (sales_dwh and data_export) in different repositories.
In general, it is only recommended to keep projects together in the same repository when they follow
the same release cycle. The reason is that most Git functionalities (branching, tagging, creating
releases, and so forth) work at the level of the repository. If you have two separate projects requiring
their own lifecycles, you should set them up as separate repositories, following a similar structure as
suggested within this document.

Apart from storing DI artifacts, this project setup could also be extended to hold BA (reports) and
Server artifacts (database connections, schedules). This would allow the Pentaho Server to be set up
from scratch using the artifacts stored in Git.

Shared Artifacts Between Projects
Assume the following situation: The sales_dwh and data_export projects need to have a home for
artifacts that will be shared between both projects. One could argue that such content could be placed
in the framework repository. However, this might be specific solution content that does not fit within
the framework repository.

We can treat such content as a specific project called common, having its dedicated Git repository. We
only need an etl repository, since the configuration can be part of the project’s configuration
repositories: all projects could use this common content in a slightly different way, configurable
through a common.properties file.

To enable this for the sales_dwh project, add the following variables:

Table 42: Variables to Enable Shared Artifacts

File Variable Description

kettle.properties COMMON_DIR

C:/pentaho/projects

Root folder that the common repository will be part of.
This always points to a location on the filesystem
since only the content-pdi part of the projects will
move to the Pentaho Repository.

project.properties COMMON_HOME

${COMMON_DIR/common/content-pdi

Variation on the CONTENT_HOME principle. You need a
COMMON_HOME variable so other projects have a way
of referencing content from the common project.
When working in a specific project, CONTENT_HOME is
your valid starting point and COMMON_HOME is how you
reference content from the common project.

common.properties To be defined
(optional)

This depends on the artifacts within the common
repository and how they need to be made dynamic.

PDI Project Setup and Lifecycle Management

Page 57

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 34: Project Setup Extension

Running Multiple Projects Within a Single Pentaho Server
Assume your Git setup is as discussed within the document: two projects that each have their
dedicated etl and configuration repository. This makes sense at development time, since each
project is being maintained by its own team, and, as such, each project has its own lifecycle.

However, you might run into a situation where, once past development, the projects need to be
deployed into a single Pentaho Server. This conflicts with our current setup since all of our projects
would have their own dedicated Pentaho Server, started through the start-pentaho.sh/bat script
within the config folder for the right project environment.

In order to make this work, we need to introduce a new Git repository called platform-
configuration. This repository will house all platform environment configurations, one per Pentaho
Server environment, which we will call “platform” here. Make sure to name the config folders exactly
the same as for your other projects.

Each environment can only have a single .kettle and metastore folder, so we need to integrate
those form the different projects that will be running within the same Pentaho Server. This mostly
impacts the kettle.properties files and the shared.xml file. For the kettle.properties file,
this works fine since it only contains global variables that are mostly defining key project directories.

Apart from that, only the content-pdi folder of all the projects will be deployed to the Pentaho
Server. All other content from the etl and config repositories will stay on the local filesystem. This
way, whenever a job from a specific project is launched through the jb_launcher job
(framework/content-pdi/execution/jb_launcher.kjb), it will load the project-specific

PDI Project Setup and Lifecycle Management

Page 58

© Hitachi Vantara Corporation 2020. All Rights Reserved

variables from its properties files from the config repository. As a result, we will have different
jobs from different projects that can run at the same time, all using a variable called CONTENT_HOME
which is pointing to a different project’s content folder. This is not a problem, since those variables’
scope is limited to their root job.

Related Information
Here are some links to information that you may find helpful while using this best practices document:

• Demo Files
• AES
• AES Security
• Command Line Arguments Reference
• Configuring Log Tables for Concurrent Access
• File Management APIs
• Markdown
• Nonfunctional Requirements (NFRs)
• Pentaho Components Reference
• Pentaho Data Integration Library
• Pentaho Installation
• Transactional Databases and Job Rollback
• Use Version History

https://hcpanywhere.hitachivantara.com/u/tCW2PEoltjGmJbYj/6be40e6f-dc91-4836-b66a-351fa04a3f86?l
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://help.pentaho.com/Documentation/9.0/Setup/AES_security
https://help.pentaho.com/Documentation/9.0/Setup/Command_line_arguments_reference
https://wiki.pentaho.com/display/EAI/Configuring+log+tables+for+concurrent+access
https://help.pentaho.com/Documentation/9.0/Developer_center/REST_API_Reference/File_Management
https://www.markdownguide.org/
https://www.scaledagileframework.com/nonfunctional-requirements/
https://help.pentaho.com/Documentation/9.0/Setup/Components_Reference
https://support.pentaho.com/hc/en-us/articles/360000307943-Pentaho-Data-Integration
https://help.pentaho.com/Documentation/9.0/Setup/Pentaho_installation
https://help.pentaho.com/Documentation/9.0/Products/Transactional_databases_and_job_rollback
https://help.pentaho.com/Documentation/9.0/Products/Use_version_history

	Overview
	Before You Begin
	Terms You Should Know
	Use Case: Sales Reporting and Data Exports
	Demo Download Link

	Content and Configuration Management
	Managing Your Content
	Configuration Primer
	Git Repositories
	PDI-Git Integration
	ETL Repository Structure
	Git Repository Branches and Tags
	Git Branches
	Git Tags

	Deployment Strategy

	Managing Your Configuration
	Default PDI Configuration in the .kettle Folder
	Global Variables in kettle.properties
	Sharing Database Connections with shared.xml
	Spoon GUI Options in .spoonrc

	Specific Variables in the properties Folder
	Project Specific Variables in project.properties
	Job Specific Variables in job.properties

	PDI Start Scripts
	Password Encryption
	Security
	Configuration Repository Structure

	Data Integration Framework
	Dedicated Framework Repository
	Concepts
	Main Job and Work Units
	Job Restartability
	Tracking Current Status with the job_control Table

	Triggering Framework Job Executions with jb_launcher Job
	Main Job Template
	Development Variable Workaround with jb_set_dev_env Job
	Framework Repository Structure

	Logging and Monitoring
	File Logging
	Logging Levels
	Redirect Output to Kettle Logging
	Central Logging Directory

	Database Logging
	Job Database Logging
	Transformation Database Logging
	Logging Concurrency

	Exception Handling
	Concurrency Checks
	Dependency Management
	Job Restartability
	Data Restartability
	Transformation and Job Error Handling

	Launching DI Solution Work Units with jb_work_unit Job

	Using the DI Framework
	Setting Up the Local Environment
	Loading the Development Environment
	Referencing Other DI Artifacts
	Creating a Main Job
	Writing to Log Format
	Optimizing Database Logging
	Debugging
	Changing Execution to Local Filesystem or Pentaho Repository
	Documenting Your Solution
	Automating Deployment
	Creating a Development Guidelines Handbook

	DI Framework Demo
	Extending the Current DI Framework
	Shared Artifacts Between Projects
	Running Multiple Projects Within a Single Pentaho Server

	Related Information

