

Pentaho Data Integration (PDI) Techniques:
Dividing Large Repositories

This page intentionally left blank.

Contents
Overview .. 1

Before You Begin .. 1

Use Case: Divide a Large PDI Repository for Better Performance .. 1

Use PDI to Divide the Repository ... 2

Segmenting the Repository Folders .. 2

Exporting the Repository Folders to Files ... 2

Import the Repository Folders to the New Repository ... 4

Finalization Checklist.. 6

This page intentionally left blank.

Divide Large PDI Repositories into Small PDI Repositories

Page 1

© Hitachi Vantara Corporation 2020. All Rights Reserved

Overview
You may have initially created a single Pentaho Data Integration (PDI) repository to maintain multiple
environments – development, quality assurance, stage, production – when first installing PDI.
Following that, you might have divided this single repository into different environments using nested
folders.

Over time, this single repository may grow to a size that negatively impacts performance. You may
also have found that management of a single repository is cumbersome, even if all environments are
non-production. Using PDI objects to selectively export and import folders and dividing the repository
can be very efficient.

This document addresses these problems by detailing an automated method to improve performance
by segmenting a single repository into several smaller repositories using PDI.

Software Version(s)

Pentaho 6.x, 7.x, 8.x, 9.0

The Components Reference in Pentaho Documentation has a complete list of supported software and
hardware.

Before You Begin
This document assumes that you are familiar with PDI and its repositories, Spoon (PDI client), and
the command line interface.

Use Case: Divide a Large PDI Repository for Better Performance

Wade is dealing with a single PDI repository that he’d created months ago. Although the repository
can be divided into different environments, it has since increased to a size that has a negative
impact on performance. He has also discovered that it takes tough management to keep the
repository operating properly.

We recommend exporting the entire repository, and then reimporting it into new separate target
environments. PDI objects will also help him, by giving him the option to choose which folders he
wants to export/import.

Divide Large PDI Repositories into Small PDI Repositories

Page 2

© Hitachi Vantara Corporation 2020. All Rights Reserved

Use PDI to Divide the Repository
There are a few steps required to use PDI to divide your large repository. Before you begin, make sure
to create a backup of your PDI repository.

This document uses examples based on sample files to help illustrate the processes. These
samples, while unsupported by Pentaho, can serve as a template you can alter for use in your
environment.

You can find more information on the following steps in these sections:

 Segmenting the Repository Folders
 Exporting the Repository Folders to Files
 Import the Repository Folders to the New Repository

Segmenting the Repository Folders
You will need to complete a process to match existing folders to new repositories must be completed,
regardless of which option you have chosen to divide the repository. Using an automated approach,
this information is listed in a file.

For example, you can use a file named repository_folder_list.txt that includes a
single field, folder_name. This field includes each repository folder that you want to move to a
new repository. The example text below would move three dev folders from a single repository
to a new development repository:

folder_name

/home/dev/application1/

/home/dev/application2/

/home/app3/

Exporting the Repository Folders to Files
Once you have created the list of repository folders, you can automatically export the repository
folders themselves to XML files and folders in a file system. PDI includes an Export repository to XML
file job entry specifically designed for this task.

The following example shows a fully parameterized Export repository to XML file job entry. As
currently configured, it will create one set of export folders and an XML file for every repository folder
defined in the repository_folder_list.txt file.

Divide Large PDI Repositories into Small PDI Repositories

Page 3

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 1: Export repository to XML file Job Entry

To fully automate the process of creating export files for all the folders listed in
repository_folder_list.txt file, a few jobs and transformations must be built around the
Export repository to XML file job-entry to perform the following tasks:

1. Check for a repository_folder_list.txt file. If it exists, then read the list of PDI
repository folders to be exported.

2. For each folder listed in the file, export the repository folder to the local file system using the
Export repository to XML file job-entry.

To make the export process flexible, the following five parameters must be provided:

Parameter Definition
file_name The file name for the file that lists the repository folders to be exported.

local_directory_base The local directory where the repository folder files will be written.

repository_name The name of the source repository.

repository_user The name of the source repository user.

repository_password The password for the source repository user.

Divide Large PDI Repositories into Small PDI Repositories

Page 4

© Hitachi Vantara Corporation 2020. All Rights Reserved

Import the Repository Folders to the New Repository
Once the repository folders have been exported from the source repository to the XML files on the
file system, they can be automatically imported into the new repository.

Note: this section assumes that new repositories have already been created in your new PDI
environments.

PDI includes script files - import.sh for Linux, import.bat for Windows - specifically
designed for this task.

The following example shows a fully parameterized command that will import one repository folder
for each entry in the repository_folder_list.txt file by calling import.sh:

Figure 2: Execute Import.sh Using the Shell Job Entry

Here is the command used in the Shell job entry:

cd ${import_script_file_path}

./import.sh -rep=${repository_name} -user=${user_name} -pass=${password} -
dir=/ -
file=${local_directory_base}/${repository_folder_name}/${repository_file_na
me}.xml -rules=${rules_file_path} -coe=${continue_on_error_ind} -
replace=${replace_file_ind} -comment="${comment_desc}"

A few jobs and transformations must be built around the import script to perform the following tasks,
to fully automate the process of importing all the folders listed in repository_folder_list.txt:

1. Check for a repository_folder_list.txt file.
2. If it exists, then read the list of PDI repository folders to be imported.
3. For each folder listed in the file, import the repository folder from the local file into the

target repository.

Divide Large PDI Repositories into Small PDI Repositories

Page 5

© Hitachi Vantara Corporation 2020. All Rights Reserved

To make the import process flexible across environments, provide the following job parameters:

Parameter Definition

file_name The file name for the file that lists the repository folders to be
imported. Use the same file used to create export list.

import_script_file_path The path to the import.sh or import.bat file - does not include file
name.

local_directory_base The local directory where the repository folder files will be written.

local_directory_base The password for the username you specified with user.

repository_name The name of the enterprise or database repository to import into.

rules_files_path The path to the rules file, including full directory and file name.

user_name The repository username you will use for authentication.

The following optional job parameters may also be helpful:

Parameter Definition

comment_desc The comment that will be set for the new revisions of the imported
transformations and jobs.

continue_on_error_ind Continue on error, ignoring all validation errors. Defaults to false.

replace_file_ind Set to Y to replace existing transformations and jobs in the repository
(creates a new version if versioning is turned on). Default value is N.

Finally, an import-rules.xml file must be created and placed in the path specified in the
rules_file_path parameter.

Divide Large PDI Repositories into Small PDI Repositories

Page 6

© Hitachi Vantara Corporation 2020. All Rights Reserved

Finalization Checklist
This checklist is designed to be added to any implemented project that uses this collection of best
practices, to verify that all items have been considered and reviews have been performed.

Name of the Project:___

Date of the Review:__

Name of the Reviewer:___

Item Response Comments

Did you use the automated
approach to locate the process
for matching existing folders
to new repositories?

YES________ NO________

Did you build the jobs and
transformations around the
Export repository to XML file
job entry to perform the tasks
needed for automating the
process of exporting folders to
files?

YES________ NO________

Did you build the jobs and
transformations around the
import script to fully automate
the process of importing
folders?

YES________ NO________

