

Pentaho Data Integration (PDI) Techniques:
Guidelines for Metadata Injection

Change log (if you want to use it):

Date Version Author Changes

10/20/2017 1.0 Megan Brown Combined two metadata injection documents

2/27/2020 1.1
Mark Monroe
Megan Brown Edited for 9.0

Contents
Overview .. 1

Before You Begin .. 1

Terms You Should Know ... 1

Other Prerequisites ... 1

Use Cases .. 1

Metadata Injection ... 2

Pentaho Data Integration (PDI) Steps for Metadata Injection ... 3

Recommendations for Metadata Injection ... 4

Recommendations for Building Metadata Solutions .. 5

Standard Metadata Injection .. 5

Developing the Application ... 6

Use the Template to Create a Transformation .. 8

Troubleshooting Metadata Injection Solutions ... 10

Full Metadata Injection .. 11

Complex Metadata Injection .. 12

Data Lake .. 13

Use Case 1: Sourcing Files into Data Lake, Data Warehouse, Reporting ODS ... 14

Use Case 2: Search Field for Patterns, Evaluate, and Assign a Weight for Processing 15

Step 1: Building the Sample Source File .. 15

Step 2: Building the ETL Template Transformation ... 16

Adding the CSV Input Step .. 18

Adding the String Operations Step .. 18

Adding the Replace in String Step .. 19

Adding the Filter Rows Step .. 19

Adding the Select Values Step .. 20

Adding the Text File Output Step ... 20

Step 3: Building the ETL Building Transformation ... 21

Adding the Text File Input Step .. 21

Adding the Get Variables Step.. 23

Adding the Filter Rows Step .. 24

Adding the Add Constants Step ... 24

Adding the ETL Metadata Injection Step ... 24

Step 4: Building the Job ... 26

Step 5: Renaming the First Transformation ... 27

Step 6: Renaming the Second Transformation .. 28

Step 7: Running Job and Validating Output .. 29

Related Information ... 30

PDI Techniques: Guidelines for Metadata Injection

Page 1

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Overview
This document covers some best practices for using template-driven designs, and navigating and
operating levels of metadata injection. It contains an example of how to build the data-driven rule
Extract/Transform/Load (ETL) transformation and make it flexible, so that it can be added to, changed,
or removed without adding development cycles.

The intention of this document is to speak about topics generally; however, these are the specific
versions covered here:

Software Version(s)

Pentaho 6.1.x, 7.x, 8.x, 9.0

The Components Reference in Pentaho Documentation has a complete list of supported software and
hardware.

Before You Begin
Before beginning, use the following information to prepare for the procedures described in the main
section of the document.

Terms You Should Know

Here are some terms you should be familiar with:

 Metadata: The collection of field names, datatypes, length, and precision, typically required
for the data source and target within a transformation.

 Static ETL: ETL with parameters that do not change or that change infrequently, with minor
alterations that can be handled manually

 Dynamic ETL: ETL dealing with data from many sources, or with dissimilar structures and
frequent changes

Other Prerequisites

This document assumes that you have knowledge about Pentaho and Java JDK and that you have
already installed software Pentaho server and configured your environment. More information about
related topics outside of this document can be found at ETL Metadata Injection.

Use Cases

These use cases can be found later in the document:

 Use Case 1: Sourcing Files into Data Lake, Data Warehouse, Reporting ODS
 Use Case 2: Search Field for Patterns, Evaluate, and Assign a Weight for Processing

PDI Techniques: Guidelines for Metadata Injection

Page 2

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Metadata Injection
Metadata is traditionally defined and configured at design time, in a process known as hard-coding,
because it does not change at run time. This static ETL approach is a good one to take when you are
onboarding just one or two data sources where you can easily enter metadata manually for your
transformation.

However, this hard-coding approach presents some complications, including:

 Time consumption
 Repetitive manual tasks
 Error-prone solutions
 High labor costs of designing, developing, and supporting a fragile solution
 Added risk when predictable outcomes are jeopardized.

Metadata injection is the dynamic ETL alternative to scaling robust applications in an agile
environment. One transformation can service many needs by building a framework that shifts time
and resources to runtime decisions. This operation dramatically reduces upfront time-to-value and
flattens the ongoing investment in maintenance.

When you are dealing with many data sources that have varying schemas, try metadata injection to
drastically reduce your development time and accelerate your time to value.

Figure 1: Comparing Static ETL with Metadata Injection for Data Onboarding

Data integration is the main domain of metadata injection. As illustrated in Figure 1, metadata
injection is useful in a case with one or more of the following challenges:

 Many data sources
 Different naming conventions
 Similar content
 Dissimilar structure
 Common destination

PDI Techniques: Guidelines for Metadata Injection

Page 3

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Metadata injection takes a detour at runtime to gather the metadata and inject it into another
transformation.

Figure 2: Metadata Injection Solution Architecture

Pentaho Data Integration (PDI) Steps for Metadata Injection
The ETL metadata injection step can be used in transformations to inject metadata into another
transformation, normally with input and output steps for standardizing filenames, naming or
renaming fields, removing fields, and adding fields.

Pentaho’s metadata injection helps you accelerate productivity and reduce risk in complex data
onboarding projects by dynamically scaling out from one template to many transformations.

PDI now has over 75 steps that can be templated to inject metadata or characteristics that can make
small or large value changes, allowing each run to be different from the previous.

More information is available at:

 Pentaho Metadata Injection: Accelerating Complex Data Onboarding Processes
 (VIDEO) Pentaho Metadata Injection: Dynamic and Scalable Data Onboarding
 ETL Metadata Injection in Pentaho Documentation.

Table 1: Example Metadata Injection Steps

Step Name Category Step Name Category

Add XML Transform JSON input Input

Annotate stream Flow MapReduce input Big Data

Append streams Flow MapReduce output Big Data

Avro input Big Data Memory group by Statistics

PDI Techniques: Guidelines for Metadata Injection

Page 4

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Step Name Category Step Name Category

Combination
lookup/update Data Warehouse Merge join Joins

CouchDB input Big Data Merge rows (diff) Joins

Data validator Validation Multiway merge
join

Joins

Elasticsearch bulk
insert Bulk loading MySQL bulk loader Bulk loading

ETL metadata
injection

Flow Null if Utility

Get table names Input Oracle bulk loader Bulk loading

Get variables Job Replace in string Transform

Greenplum load Bulk loading Shared dimension Flow

Hadoop file input Big Data Sorted merge Joins

Hadoop file output Big Data Switch/case Flow

HBase input Big Data
Synchronize after
merge Output

HBase output Big Data Vertica bulk loader Bulk loading

HBase row decoder Big Data XML join Joins

If field value is null Utility

Recommendations for Metadata Injection
ETL integration development takes time for gathering requirements, building, testing, documenting,
deploying, and monitoring production. Rules, requirements, and data itself may change, over time. If
that happens, the current rules may no longer apply or new rules may need to be added to the existing
transformation to continue working.

We recommend using flexible, data-driven ETL patterns to make your data integration
transformation powerful and adaptable to changing business rules without going through a
development cycle.

Data integration can be made more flexible and reactive by building rules that can be injected into
the transformation before running, and by using the appropriate parameters to pass into ETL jobs.
For example:

 Passing in different filenames (paths and filenames can be different for each run)
 Passing different values into a custom database structured query language (SQL) statement

to allow for different behaviors (from different tables’ names, and where clause field name
values)

PDI Techniques: Guidelines for Metadata Injection

Page 5

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Recommendations for Building Metadata
Solutions
The use of metadata injection is not limited to PDI, but also extends to business analytics (BA).

You can find details on these topics in the following sections:

 Standard Metadata Injection
 Full Metadata Injection
 Complex Metadata Injection

Standard Metadata Injection
We expect to have a transformation injecting metadata into another transformation. That second
transformation normally accepts the metadata using an input and an output step.

We recommend you define a template transformation for reuse. The template normally has an
input step and an output step. The descriptive grids such as field names and types are
intentionally left blank.

We further recommend you define a transformation to inject the metadata into the template
using Flow ETL metadata injection.

We will show the transformation using the Metadata Injection step, for demonstration purposes.
Figure 3 shows the steps you might use:

Figure 3: Standard Metadata Injection

PDI Techniques: Guidelines for Metadata Injection

Page 6

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Developing the Application

A good way to learn how metadata injection works is to develop a simple application. The following
steps will guide you through creating a simple application for metadata injection:

1. Create a new transformation and name it MDI_Example_1_Standard_template.
2. From the Design tab, drag the Input Data Grid step to the workspace and name it

Test data – Input.
3. Configure the Meta and Data tabs for the step as follows, then click OK:

Tab # Columns and Parameters

Meta tab
1 Name: i - Type: Integer - Set empty string: N

2 Name: s - Type: String - Set empty string: N

Data tab

1 i: 1 - s: a

2 i: 2 - s: b

3 i: 3 - s: c

4. Drag the Transform Select values step to the design surface and connect the two
steps with a hop, but do not configure it.

This is the foundation of the metadata injection approach to computing as defined by Pentaho.

PDI Techniques: Guidelines for Metadata Injection

Page 7

 © Hitachi Vantara Corporation 2020. All Rights Reserved

5. Drag the Output Text file output step to the design surface, connect it to the Select
values step, and configure the File tab as shown:

6. Configure the Content tab as shown:

7. Do not configure the Fields tab, and save the template transformation.

PDI Techniques: Guidelines for Metadata Injection

Page 8

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Use the Template to Create a Transformation

Next, use your template to create a transformation with these steps:

1. Create a new transformation called MDI_Example_1_Standard.
2. Drag Input- Data grid and Flow ETL metadata injection steps to the design

surface and connect them.
3. Rename the Add Constant Row to Test Metadata.
4. Next, open the Test Metadata step and configure the Meta tab:

5. Configure the Data tab:

6. Open the ETL metadata injection step and configure the File tab.
7. Select Use a File for the transformation template and enter:

${Internal.Entry.Current.Directory}/${Internal.Transformation.Name}_

template.ktr.
8. There is no need to configure the Options tab.
9. Save and reopen the transformation so that variable substitution can be performed

correctly.

PDI Techniques: Guidelines for Metadata Injection

Page 9

 © Hitachi Vantara Corporation 2020. All Rights Reserved

10. Select the Inject Metadata tab and configure it, including the Target injection step
key, Target description, Source step, and Source field for the target transformation:

Your solution should render a text file called MDI_Example_1_Standard_template_output.txt
containing columns with new in the name.

PDI Techniques: Guidelines for Metadata Injection

Page 10

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Troubleshooting Metadata Injection Solutions

Developing metadata injection solutions is a powerful design pattern, but can make debugging more
difficult due to the dynamic nature of this approach.

One way to solve this is by opening the ETL metadata injection step, and on the Options tab,
specifying an Optional target file (ktr after injection):

Figure 4: Options Tab in Metadata Injection Step

This will save the transformation at runtime, so we can inspect the target of the metadata injection on
the Meta-data tab. Here we’ll find the values of the injected metadata:

Figure 5: Meta-data Tab

This debugging approach can aid in problem detection, isolation and correction.

PDI Techniques: Guidelines for Metadata Injection

Page 11

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Full Metadata Injection
This compute pattern should be used when you need to inject metadata at runtime for the filename,
rename field names, or remove a field name.

We recommend you use asynchronous steps to inject the metadata. We also recommend that
you use variables to make the injection process dynamic at runtime.

The metadata injection transformation might look like this:

Figure 6: Full Metadata Injection

This pattern can be examined or built upon from in our samples transformations meta-
inject folder supplied with our Client Tools.

PDI Techniques: Guidelines for Metadata Injection

Page 12

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Complex Metadata Injection
This type of metadata injection offers a flexible, scalable, and repeatable process to onboard many
data sources. Some of these sources present different formats or unknown field lists that need to be
ingested regularly.

For example, you might have a requirement to load transaction data values from a supplier’s
spreadsheet, filter out specific values to examine, and output them to a text file. You can expand
this repetitive transformation with a template using metadata injection to load data values from
multiple suppliers’ spreadsheets in various folders, filter out common, specific transaction values
to examine, and output all of it to a single source text file. This compute pattern is documented in
Pentaho Documentation: ETL Metadata Injection.

The ETL metadata injection transformation may look like the following:

Figure 7: Complex Metadata Injection

We recommend you focus on a subset of data values common to all your input files. Develop
three components to the solution:

 Template Transformation: The main repetitive transformation for processing the data per
data source. This normally contains an input and output step.

 Metadata Injection Transformation: The transformation defining the structure of the
metadata and how it is injected into the main transformation.

 Transformation for All Data Sources: The transformation going through all the data
sources, calling the metadata injection transformation per data source and logging the
entire process for possible troubleshooting, if needed.

PDI Techniques: Guidelines for Metadata Injection

Page 13

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Data Lake

The above example can be extended to provide a dynamic ETL data integration compute pattern for
your big data projects. A blueprint for this can be found in Data Lake Operations.

We recommend you keep all Hadoop activities in the cluster as much as possible. This includes
input, process, and output. We also recommend that you avoid RDBMS connections in Hadoop
jobs and transformations.

Modify the transformation described in Transformation for all input sources in the ETL Metadata
Injection documentation with the target Hadoop by replacing the Text file output step with the
Hadoop file output step. The process_all_suppliers.ktr might then look like the following:

Figure 8: Example of a Process All Suppliers Transformation

PDI Techniques: Guidelines for Metadata Injection

Page 14

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Use Case 1: Sourcing Files into Data Lake, Data
Warehouse, Reporting ODS
This section provides a sample use case and example of how to build flexible ETL data integration jobs
that source some of their rules and patterns from outside the job and inject them before each run.

Suppose you have a simple transformation to load transaction data values from a supplier, filter-
specific values, and output them to a file. You would need to run this simple transformation for
each supplier if you have more than one. Yet, with metadata injection, you can expand this simple
repetitive transformation by inserting metadata from another transformation that contains the
ETL metadata injection step. This step coordinates the data values from the various inputs
through the metadata you define. This process reduces the need for you to adjust and run the
repetitive transformation for each specific input.

Figure 9: Using the ETL Metadata Injection Step

PDI Techniques: Guidelines for Metadata Injection

Page 15

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Use Case 2: Search Field for Patterns, Evaluate,
and Assign a Weight for Processing
This section shows you what you will need for successful searching, evaluation, and processing weight
assignment.

Suppose you have over 35 command security feeds/sources, and you want to search patterns
within one field and give a weighted score if the pattern is found, without building 35+ different
hard-coded ETL jobs. You also want to quickly add, change, and delete patterns or weighted scores
as necessary. Your data is audit fields across companies’ websites, lightweight directory access
protocol (LDAP) command requests, and production server command line terminal sessions (both
Linux and Windows).

It is best to set up only what is needed in the rules, leaving most things blank, and including only those
things you know will not change.

In this example, we will store the rules in a local text file, with the first row containing column headings,
delimited by the pipe symbol: |

Step 1: Building the Sample Source File
The first thing that you will need to do is create the sample source file using these steps:

1. This example will be a source text file. Name it C:\opts\etl\cmd_src_in.txt.
2. Use this template of sample data to create the source file:

Make sure you try this in a test environment, not in a production environment.

powershellwibblefile

powershell.exe File

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -command
NewDriversAutoMap.ps1

cmd -filename

date

time

word.exe

notepad

java --classpath=:c:\bin Writer

PDI Techniques: Guidelines for Metadata Injection

Page 16

 © Hitachi Vantara Corporation 2020. All Rights Reserved

3. Build a source for data rules to measure security threats (eight fields in total):

Field Name Field Type Description

1 Key String

Group name, used to pull different groupings of
rules for different runs (for example: all rules for
windows, linux, ruleset01, ruleset02,
emailspamrules)

2 Field String
Field in transformation to perform search on,
replace with weighted value

3 UseRegExYN Boolean Y/N value for step behavior

4 SearchRegEx String RegEx search pattern to be used

5 ReplaceWithValue Integer
Value to be stored if SearchRegEx finds a match
(this value will be filtered and used further
downstream for appropriate action)

6 SetEmptyYN Boolean Y/N value for step behavior

7 WholeWordYN Boolean Y/N value for step behavior

8 CaseSensitiveYN Boolean Y/N value for step behavior

4. Use this input for the dynamic rules to be pulled in and built into the output:

Key|Field|UseRegExYN|SearchRegEx|ReplaceWithValue|SetEmptyYN|WholeWordYN|Ca
seSensitiveYN

windows|threat|Y|.*powershell\.exe.*File.*|10|N|Y|N

windows|threat|Y|.*powershell\.exe.*IEX.*|10|N|Y|N

windows|threat|Y|.*net user /add.*|20|N|Y|N

linux|threat|Y|.*sudo su -.*|05|N|Y|N

linux|threat|Y|.*rm -f -R.*|25|N|Y|N

linux|threat|Y|.*rm -R -f.*|25|N|Y|N

Step 2: Building the ETL Template Transformation
After you create the sample source file, you’ll need to build a template for ETL transformations. This
transformation will lay out steps for data processing rules:

PDI Techniques: Guidelines for Metadata Injection

Page 17

 © Hitachi Vantara Corporation 2020. All Rights Reserved

1. Create the transformation called etl_template_search_weighted_.ktr:

2. Set up the parameters for the input/output text files (this could easily be changed to be

RDBMS Source/Target locations):

3. Next, you will set up the steps that make up your transformation template.

PDI Techniques: Guidelines for Metadata Injection

Page 18

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Adding the CSV Input Step

Use these parameters to fill out the CSV Input step:

Step name Filename Parameters
SourceData $(src_file_nm) ktr

parameter
Name: command
Type: String
Length: 200
Type: both

Adding the String Operations Step

Use these parameters to set up a String operations step:

Field name Parameters

In stream field command

Out stream field threat

Trim type none

Lower/Upper none

Padding none

InitCap N

PDI Techniques: Guidelines for Metadata Injection

Page 19

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Field name Parameters

Escape None

Digits none

Remove Special
character

none

Adding the Replace in String Step

While setting up a Replace in string step, you will be leaving the parameters blank.

The rows will be populated from the metadata injection build, and elements and data will
come from the text source file.

Adding the Filter Rows Step

After you add the Filter rows step, you will need to add two conditions:

Condition

1 threat >= [10]

2 threat <= [99]

PDI Techniques: Guidelines for Metadata Injection

Page 20

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Adding the Select Values Step

Use the following parameters, which will filter fields down to the two we want to keep:

Fieldname

1 command

2 threat

Adding the Text File Output Step

Use these parameters to set up the Text file output step:

Field name Parameters

Filename ${trg_file_nm}

Create Parent Folder Checked

PDI Techniques: Guidelines for Metadata Injection

Page 21

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Step 3: Building the ETL Building Transformation
After you build your template, it is time to create an ETL Building transformation. This transformation
will be the driving one that pulls all business rules, populates all missing properties, and outputs a
fully runnable ETL transformation:

1. Create a transformation called etl_search_weighted_.ktr:

2. Set up the parameters for the input/output text files (this could easily be changed to be
RDBMS Source/Target locations:

Parameter Default Value

1 rule_file_nm c:\opts\etl\in_rules.txt

2 rule_key_value windows

3 src_file_nm c:\opts\etl\cmd_src_in.txt

4 trg_file_nm c:\opts\etl\weight_output.txt

3. Next, you will need to set up steps for the transformation.

Adding the Text File Input Step

Use the following parameters to create a Text file input step.

1. Start with the File tab to enter these parameters:

Field name Parameters

File/Directory ${rule_file_nm}

PDI Techniques: Guidelines for Metadata Injection

Page 22

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Field name Parameters

Required N

Include subfolders N

2. Go to the Content tab and set the following parameters:

Field name Parameters

Filetype CSV

Separator |

Enclosure “

Header check it

Number of header lines 1

No empty rows check it

Format mixed

Length Characters

Limit 0

Be lenient when parsing dates? check it

The date format Locale en_US

PDI Techniques: Guidelines for Metadata Injection

Page 23

 © Hitachi Vantara Corporation 2020. All Rights Reserved

3. Add the following eight fields on the Fields tab:

Name Type Parameters

1 Key String set Length to 7

2 Field String set Length to 6

3 UseRegExYN Boolean no parameters

4 SearchRegEx String set Length to 25

5 ReplaceWithValue Integer set Format to # , Length to
15, and set Precision to 0

6 SetEmptyYN Boolean no parameters

7 WholeWordYN Boolean no parameters

8 CaseSensitiveYN Boolean no parameters

Adding the Get Variables Step

Add the Get variables step with the following parameters:

Name Variable Type Trim type

1 val_key_value ${rule_key_value} String both

2 val_sec_val ${src_file_nm} String both

3 val_trg_value ${trg_file_nm} String both

PDI Techniques: Guidelines for Metadata Injection

Page 24

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Adding the Filter Rows Step

Create a Filter rows step and use these parameters:

Field name Parameter

The condition: Key = val_key_value

Adding the Add Constants Step

Create an Add constants step with the following parameters:

Name Type Parameters

1 empty String Set empty string to Y

2 Boolean_yes Boolean Set Value to Y and Set empty
string to N

3 Boolean_no Boolean Set Value to N and Set empty
string to N

Adding the ETL Metadata Injection Step

On the Inject Metadata tab, connect fields to files/properties you want to populate for the fully built
ETL transformation by locating the Replace in string section, and expand to see all the fields.

1. Map these fields to the following:

Field Source Step Source Field
FIELD_IN_STREAM Add constants Field

FIELD_OUT_STREAM Add constants empty

USE_REGEX Add constants UseRegExYN

REPLACE_STRING Add constants SearchRegEx

PDI Techniques: Guidelines for Metadata Injection

Page 25

 © Hitachi Vantara Corporation 2020. All Rights Reserved

REPLACE_BY Add constants ReplaceWithValue

EMPTY_STRING Add constants SetEmptyYN

REPLACE_WITH_FIELD Add constants empty

REPLACE_WHOLE_WORD Add constants WholeWordYN

CASE_SENSITIVE Add constants CaseSensitiveYN

2. On the Options tab, set the following parameters:
a. Transformation:

${Internal.Entry.Current.Directory}/etl_template_search_weight
ed_.ktr

b. Fill in the Optional target file (ktr after injection) field with the output target
file for the runnable ETL transformation.

c. Uncheck Run resulting transformation, to prevent the ETL transformation
from being executed after you build it.

PDI Techniques: Guidelines for Metadata Injection

Page 26

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Step 4: Building the Job
Build the job to run two transformations, build ETL and Execute built ETL:

1. In the Job properties, set the Job name and Job filename:

PDI Techniques: Guidelines for Metadata Injection

Page 27

 © Hitachi Vantara Corporation 2020. All Rights Reserved

2. Add the following parameters in the Parameters tab. Use the same names as those in
the two ETL transformations so they will be picked up correctly when they are shared:

3. Select and connect these items for the job. We will rename the transformations in a
moment:

Step 5: Renaming the First Transformation
Next, rename the first transformation this way:

1. Open the first transformation and change the Entry Name to build ETL.
2. On the Options tab, in the Transformation field, enter:

${Internal.Entry.Current.Directory}/etl_search_weighted_.ktr
3. Check Wait for remote transformation to finish.

PDI Techniques: Guidelines for Metadata Injection

Page 28

 © Hitachi Vantara Corporation 2020. All Rights Reserved

4. On the Parameters tab, check Pass parameter values to sub transformation to make
sure the parameters flow through properly during execution:

Step 6: Renaming the Second Transformation
Next, rename the second transformation and enter these parameters:

1. Open the second transformation and change the Entry Name to Execute Built ETL.
2. On the Options tab, in the Transformation field, enter:

${Internal.Entry.Current.Directory}/toberun_.ktr
3. Check Wait for remote transformation to finish.

PDI Techniques: Guidelines for Metadata Injection

Page 29

 © Hitachi Vantara Corporation 2020. All Rights Reserved

4. On the Parameters tab, check Pass parameter values to sub transformation, so the
parameters will flow through properly during execution.

Step 7: Running Job and Validating Output
After you have finished, it is time to run the job and validate the output:

1. Run the job, and review and validate the output:

2. For the windows rule group use case, there is one row to send downstream for further
processing:

C:\type weight_output.txt

command;threat

powershell.exe File;10

PDI Techniques: Guidelines for Metadata Injection

Page 30

 © Hitachi Vantara Corporation 2020. All Rights Reserved

Related Information
Here are some links to information that you may find helpful while using this best practices document:

 Hitachi Vantara: Data Lake Operations
 Hitachi Vantara: Report Pre-Processors
 Pentaho Components Reference
 Pentaho Customer Use Case: Kingland Systems
 Pentaho Data Sheet: Data Integration
 Pentaho ETL Metadata Injection
 Pentaho Metadata Injection: Accelerating Complex Data Onboarding Processes
 (VIDEO) Pentaho Metadata Injection: Dynamic and Scalable Data Onboarding

