

Pentaho Data Integration
(PDI) Standards for Lookups,

Joins, and Subroutines

Change log:

Date Version Author Changes
10/11/2017 1.0 Matthew Casper

2/6/2019 1.1
Matthew Casper
Megan Brown

Updates for 8.2

7/10/2019 1.2
Matthew Casper
Megan Brown

Updates for 8.3

2/28/2020 1.3
Matthew Casper
Megan Brown

Updates for 9.0

Contents
Overview .. 1

Before You Begin .. 1

Other Prerequisites ... 1

Use Cases .. 1

Lookups ... 2

Database Join .. 2

Database Lookup ... 4

Stream Lookup ... 6

Dimension Lookup/Update .. 8

Joins .. 10

Join Rows (cartesian product) ... 10

Merge Join ... 11

Merge Rows (diff) ... 13

Subroutines ... 15

Mappings ... 15

Transformation Executor .. 17

Job Executor .. 19

Related Information ... 21

Finalization Checklist .. 21

This page intentionally left blank.

PDI Standards for Lookups, Joins, and Subroutines

Page 1

© Hitachi Vantara Corporation 2020. All Rights Reserved

Overview
This document covers some best practices on Pentaho Data Integration (PDI) lookups, joins, and
subroutines.

Our intended audience is PDI users or anyone with a background in ETL development who is
interested in learning PDI development patterns.

The intention of this document is to speak about topics generally; however, these are the specific
versions covered here:

The Components Reference in Pentaho Documentation has a complete list of supported software and
hardware.

Before You Begin
Before beginning, use the following information to prepare for the procedures described in the main
section of the document.

Other Prerequisites

This document assumes that you have knowledge about PDI and that you have already installed
Pentaho software.

Use Cases

Use cases employed in this document include the following:

• An end user of Pentaho Data Integration wants to understand when it is appropriate to
use a Stream lookup versus a Database lookup for dimensional data prior to loading a
database fact table.

• A telecommunications company is looking to replace redundant code lines with
consistent processes but needs to know if the solution is better suited for a Mapping
subroutine or a Transformation executor.

https://help.pentaho.com/Documentation/9.0/Setup/Components_Reference

PDI Standards for Lookups, Joins, and Subroutines

Page 2

© Hitachi Vantara Corporation 2020. All Rights Reserved

Lookups
In this section, we will explore four of the more common ways to look up data from within a
transformation and the standards and best practices associated with each. In all four cases, there are
ideal situations for arguing their use over the other options:

You can find details on these topics in the following sections:

• Database Join
• Database Lookup
• Stream Lookup
• Dimension Lookup/Update

Database Join
The Database join step offers some unique abilities to look up data in one or more database
tables. This step allows for the abilities to:

• Write custom SQL
• Return the fields desired, which can be calculations using functions
• Pass in variables
• Use parameters as arguments in the SQL
• Join across multiple tables
• Write subqueries
• Perform outer joins

Despite these advantages, there are two main performance issues to consider:

1. You cannot cache data in a Database join step as in other lookup step types. Caching data
allows you to store records in memory instead of fetching against the database, which
provides excellent performance.

1. The custom SQL is performed for every row that is passed into the step, so if 1,000 rows are
passed into the step, that means there will be 1,000 queries performed against the
database. Because of this, you need fast-running, simple SQL that has been performance
tuned (such as with column indexing) to effectively use a Database join step.

Figure 5 shows a database join step example. In it, we needed to apply logic to three incoming date
fields used as parameters (?s in the SQL) to get the correct foreign key (dim_date_hour_key) and
date (date_value).

PDI Standards for Lookups, Joins, and Subroutines

Page 3

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 5: Database Join Step Example

Aside from the performance issues discussed earlier, you must also know when it is appropriate to
use this step, or other steps. Your logical lookup rules will help you make this decision. Do you need
to:

• Join more than one table together?
• Apply a database function to the returning field?
• Apply more intricate WHERE clauses involving OR conditions or subqueries?

Whatever your rules may be, testing will help you see which lookup steps work best for your situation.
Try doing a comparison with realistic datasets before you decide on using a Database join step.

PDI Standards for Lookups, Joins, and Subroutines

Page 4

© Hitachi Vantara Corporation 2020. All Rights Reserved

Table 5: Should I Use a Database Join Step?

Need Reasons to Use Database Join

Special lookup logic required Joins across tables, intricate WHERE clause, subqueries

Number of streaming records is
relatively small

Performance can be negatively impacted because the step
fires the SQL for each streaming record

Need to use variables or
parameters

Pass streaming fields in as arguments in the SQL; use
variables in the SQL

Special logic for return fields
Database functions need to be applied, aggregates such as
SUM, COUNT, MAX, MIN

Database Lookup
The Database lookup step functions in much the same way as the Database join, because
you can use different comparison operators like greater than/less than/equal to, BETWEEN,
LIKE, IS NULL, and IS NOT NULL.

Two things that cannot be done within the database lookup are:

• Custom SQL
• Applying database functions

Despite these limitations, a big performance boost is available to the Database lookup step in the
form of the Enable cache option. This option allows you to store each record that meets the join
criteria in memory instead of constantly referring back to the database as in the Database join step.

If you enable the cache, another option to Load all data from table becomes available. This can also
help you boost your performance because the step will collect all records from the lookup table and
store them in memory, holding them available for immediate access.

To use this option, first make sure that all the records of the table will fit in memory, or you
could run into Java heap space errors.

In the following database lookup example, we are grabbing the rental_hourly_rate from the
dim_rental table, giving the field a new name (RENTAL_EXPENSE), assigning the value of 0 if a match
is not found, and setting the Type to BigNumber. Because this is a small cache and can fit into our

PDI Standards for Lookups, Joins, and Subroutines

Page 5

© Hitachi Vantara Corporation 2020. All Rights Reserved

allotted memory slot of 6GB, we will use the Enable cache and Load all data from table options:

Figure 6: Database Lookup Example

If you have enough memory:

• Enable cache will always boost your performance.
• Enable cache and Load all data from table will boost your performance even more.

We recommend you test with real-world datasets to find your best performance path.

PDI Standards for Lookups, Joins, and Subroutines

Page 6

© Hitachi Vantara Corporation 2020. All Rights Reserved

Table 6: Should I Use a Database Lookup Step?

Reasons to Use Database Lookup Details

Straightforward lookup using base
comparisons

Fields using =, >, >=, <, <=, <>, LIKE, BETWEEN, IS NULL, IS
NOT NULL

Ability to enable the cache Enabling the cache stores matched records in memory for
quicker access to future streaming records.

All data from lookup can fit in
memory

The Load all data from table option will put all lookup
records in memory, providing for substantial performance
improvement over going to the database for each record.

Outer join is needed By default, this is an outer join, allowing the developer to
work with the records that don’t have a match. However,
there is the option to make it an equijoin by enabling Do
not pass the row if the lookup fails.

Stream Lookup
The Stream lookup step is like a combination of the Database join and Database lookup
steps. Stream lookup expects an input from the main stream and one from a new input like
a Table input.

• Like with the Database join step, the Table input can have custom SQL and employ all
types of database options and functions.

• Like the Database lookup step, Stream lookup will store all the records from that Table
input in memory for access, so it will only need to go to the database once.

Things to keep in mind when you consider a Stream lookup step include:

• The step always performs an outer join to the Lookup step (such as Table input), so you
should always configure a default value for the field(s) to retrieve.

• There is no option for you to use any comparators. Stream lookup always uses equals (=)
between the field and lookupField properties. This means that those properties and the
fact records are stored only in memory will determine whether this step is the right lookup
step for your transformation.

• Preserve memory (costs CPU) is checked by default, and should be left checked in most
cases because the rows of data will be encoded, preserving memory while sorting. However,
this effect comes at the expense of the CPU calculating the hashcode.

In the following example, we have our main stream going into the slkup-shrunk_items Stream
lookup step, and the ti-shrunk_items is a Table input defined as the lookup step. In the ti-
shrunk_items, you have your custom SQL with joins across tables, and WHERE clauses. In slkup-
shrunk_items, notice the section The key(s) to look up the value(s) does not provide any
comparator options. Finally, in the Specify the fields to retrieve section, we provide a new name to

PDI Standards for Lookups, Joins, and Subroutines

Page 7

© Hitachi Vantara Corporation 2020. All Rights Reserved

the retrieval field and set a default value. Preserve memory (costs CPU) is left enabled:

Figure 7: Stream Lookup Example

Table 7: Should I Use a Stream Lookup Step?

Reasons to Use Stream Lookup Details

No need to use comparators
other than =

The step only performs lookups using = and cannot use any
other operators.

Ability to preserve memory
Enabling the Preserve memory setting saves memory at the
expense of CPU.

All data from the lookup can fit in
memory

All data from the Lookup step will go into memory, providing
for substantial performance benefits over going to the
database each time.

Outer join is needed

By default, this is an outer join, allowing the developer to work
with the records that don’t have a match. We recommend
setting values for the Default property of fields being
retrieved.

PDI Standards for Lookups, Joins, and Subroutines

Page 8

© Hitachi Vantara Corporation 2020. All Rights Reserved

Dimension Lookup/Update
The Dimension lookup/update step is geared toward dimensions with slowly changing structure,
such as date _from and date_to columns that identify historic or active records.

Generally, the transformation that uses this lookup wants to obtain the dimension table’s technical
key to be used as a foreign key in the fact table. However, this type of lookup can also be used to
obtain other pieces of information from within the dimension table.

Follow these rules when you use this step as a lookup:

1. Uncheck Update the dimension? If you leave it checked, the step will be used as a lookup,
but will also potentially update records within the dimension.

2. Check Enable the cache? This will allow you to store matched or found records in memory,
and will increase performance for later streaming records, because the step will only have to
go to memory to find records instead of back to the database.

3. Check Pre-load the cache? Enable this setting if you are certain that all of the table’s records
will fit into memory. This will provide you the best and quickest possible performance.

Once you have followed these rules, all that remains is configuring the step correctly for the Key
fields, Technical key field, and Stream Datefield. Here is the configuration of all these sections:

Figure 8: Dimension Lookup/Update Example

PDI Standards for Lookups, Joins, and Subroutines

Page 9

© Hitachi Vantara Corporation 2020. All Rights Reserved

Table 8: Should I Use a Dimension Lookup/Update Step?

Reasons to Use Dimension Lookup/Update Details

Dimension is slowly changing
This step is geared toward dimensions that have
slowly changing structure, so if your lookup table
does not have that structure, do not use this step.

All data from lookup can fit in memory
All data from the Lookup step will go into
memory, provided the Pre-load the cache?
setting is enabled.

No need to use comparators other than =
This step only performs lookups using = and
cannot use any other operators.

Outer join is needed

By default, this is an outer join, allowing the
developer to work with the records that don’t
have a match. Unmatched records will receive the
stub record values from the dimension table.

PDI Standards for Lookups, Joins, and Subroutines

Page 10

© Hitachi Vantara Corporation 2020. All Rights Reserved

Joins
In this section, we will explore joins, which involve bringing together two streams based upon some
key logic, or, as in the case of Join Rows (cartesian product), potentially no logic. As with the Lookups
in the previous section, a case can be made for using each of these types of join. Your choice will
depend on your situation and which join offers you the best performance.

You can find details on these topics in the following sections:

• Join Rows (cartesian product)
• Merge Join
• Merge Rows (Diff)

Join Rows (cartesian product)
The first thing to understand about the Join rows (cartesian product) step is that you must
use caution when you use this step type. It will certainly join streams together, and you can
completely omit the join logic if you want. However, if you have 10 rows from one stream, and

10 rows from another stream, the results of this step will be 100 rows, because it will join for every
case/record possible.

A potential use for this step is to do data load verification by checking that the number of rows loaded
to a table matches the number of rows received in the source file. If these numbers do not match in
our comparison, we can take action by sending notifications and/or aborting further downstream
processes.

Figure 9: Join Rows (cartesian product) as a Step in a Transformation

Inside the step itself, there is little (or nothing) to do. You do not have to change the Temp directory,
the Main step to read from, or even set The condition:

PDI Standards for Lookups, Joins, and Subroutines

Page 11

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 10: Join Rows Setup

Table 9: Should I Use a Join Rows (cartesian product) Step?

Reasons to Use Join Rows
(cartesian product)

Details

Comparing data of disparate
sources

If you need to do a record-by-record comparison between
data that exists in different sources, this step may be
beneficial. See the previous example of comparing records
counts between a file and a database table.

Adding constants
This step can be used to add a constant to every record. The
constant may come from a different data source in this
situation.

Watch record count inflation
This step will apply a join to every record value. If there are
10 records in one stream and 10 in another, you can end up
with 100 records, depending on record values.

Applying conditions

Apply conditions such as one date between two others. For
instance, a date between start date and end date:
transaction_date >= start_date and
transaction_date <= end_date.

Merge Join
Merge join is one of the most common steps to use out of the Joins folder when you want to
merge two streams. It simply uses key fields to bring records together, and the join options
are INNER, LEFT OUTER, RIGHT OUTER, and FULL OUTER.

PDI Standards for Lookups, Joins, and Subroutines

Page 12

© Hitachi Vantara Corporation 2020. All Rights Reserved

You must sort key fields before using this join, so use a Sort Rows or an ORDER BY clause in the
SQL of a Table input step, or similar.

One limitation that you may need to address with this step is that in cases where you use a LEFT or
RIGHT OUTER join, you do not have the option of setting a default value, so if there is no match, it
returns NULL. You may need to account for that if there are NOT NULL constraints to your database
columns.

Figure 11 shows an example of the Merge join step. Here, we have a main stream that does a Sort
Rows prior to the Merge Join, and a Table input representing the second stream, using an ORDER BY
clause to avoid the need for a Sort Rows in that stream. This example uses INNER as its Join Type, so
if a match is not found, that record is excluded from the stream:

Figure 11: Merge Join Example

PDI Standards for Lookups, Joins, and Subroutines

Page 13

© Hitachi Vantara Corporation 2020. All Rights Reserved

Table 10: Should I Use a Merge Join Step?

Reasons to Use Merge Join Details

Joining data sets of different input
steps

This works almost the same as a Stream Lookup, except
that records are not stored in memory.

Key fields must be sorted
The step will not work accurately if the key fields are not
sorted.

Test for performance
This step can be labor-intensive, so do some testing to be
sure it is the right step for your transformation.

Use when memory is a factor
If the environment is such that memory usage is at a
premium, using this join step over Stream Lookup can be
advantageous.

Merge Rows (diff)
The Merge rows (diff) step compares two streams of data, creating a “flagfield” that identifies
changed data. The flag will have values of identical, deleted, changed, or new, and based

upon this flag, you can take different actions. For example, you can use a Switch/case step afterward,
using the flagfield to route records to be inserted to a table (Table output), updated (Update), deleted
(Delete), or do nothing (Dummy).

Much like the Dimension lookup/update step, Merge Rows (diff) serves as another way to handle
slowly changing dimensions. However, this step can be more useful than Dimension lookup/update
in the case of data sources not having flags, such as update dates, that help identify records that are
new or changed. Merge Rows (diff) can compare the source to the target to determine the
appropriate actions to take.

In Figure 12, we have two Table input steps, one for the source staging table, and one for the target
table. Merge rows (diff) follows, and we have identified the Reference rows origin, Compare rows
origin, Flag fieldname, Keys to match, and Values to compare in the step configuration. Next, we
use the Switch/case (swcs-flagfield) step to route records based on the flagfield values
determined by Merge rows (diff). Finally, we send the records to the appropriate output step:

PDI Standards for Lookups, Joins, and Subroutines

Page 14

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 12: Merge Rows (diff) Example

Table 11: Should I Use a Merge Rows (diff) Step?

Reasons to Use Merge Rows (diff) Details

Data source does not have an
incremental pull indicator

This step is ideal for comparing the source to target data
for changed data capture. It is especially useful when the
source data structures do not indicate what data is new or
changed, preventing you from pulling records
incrementally.

Sort required
The Key to match in this step must be sorted, which can
affect overall transformation performance especially if
there is a large number of records.

Dimension Lookup/Update

Use Dimension Lookup/Update as your first choice for this
functionality for a dimension table, but if you need to
identify something that has been deleted from the source,
Merge Rows (diff) is the best choice.

PDI Standards for Lookups, Joins, and Subroutines

Page 15

© Hitachi Vantara Corporation 2020. All Rights Reserved

Subroutines
Subroutines are a good way to minimize the amount of coding that can build up across a project.
Generally, subroutines trim down repeated logic into a single routine and minimize otherwise high
maintenance costs. If you identify lines of code that can be generalized and functional across many
transformations, that may be a good candidate for a subroutine.

Our Guidelines for Metadata Injection in PDI document in the PDI Library has specific
recommendations for standard, full, and complex metadata injection for ETL.

You can find details on these topics in the following sections:
• Mappings
• Transformation Executor
• Job Executor

Mappings
If you have a series of transformations that perform the same repetitive steps, you may find
mappings useful. With a mapping, you can manage those series of steps in just one place, but
apply them across many transformations, reducing your amount of work.

In Figure 13’s example, we are receiving a ZIP file of 190 CSV files which each have the filename format
of table_name_start_datetime_end_datetime. We need to parse each filename; extract the
table name, start date/time, and end date/time; and set those extracted values as variables back in
the main transformation, to assist in loading our staging database tables. Because every file has the
same naming convention, and we need to do this set of actions for every file, we can use a mapping
for this series of steps.

The main transformation for the file equipment_location_history is in the top left portion of
Figure 13. We start with a Get filenames step and then pass that to our Mapping (sub-
transformation) step; the dialog box for this is displayed in the bottom left of Figure 13. There, we
have configured the list of fields for the Input tab, and just to the right of that is the configuration for
the Output list of fields we expect to receive back in the main transformation.

The actual mapping itself, beginning with the Mapping input specification (mis-file_metadata) and
ending with the Mapping output specification (mos-stage_transform), appears in the top right of
Figure 13. The last part of the picture is the dialog box for the Mapping input specification with the
complete list of fields expected to be received along with data types and lengths.

If we were doing this separately for 190 files, if the file naming convention changed, we would have to
change 190 separate transformations. However, because we are using a mapping, if the file naming
convention changes, there is only one place we will need to adjust, and then that will apply to all 190
transformations:

https://support.pentaho.com/hc/en-us/articles/360000307943-Pentaho-Data-Integration

PDI Standards for Lookups, Joins, and Subroutines

Page 16

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 13: Mapping Example

This is a basic example of using a mapping, because there are only three steps that repeat across all
the transformations. There is room for even more logic. In fact, the Mapping (sub-transformation)
can be configured to accept multiple inputs and outputs. Our mapping in Figure 13 could be altered
to have more than one Mapping input specification, and more than one Mapping output
specification, if necessary.

PDI Standards for Lookups, Joins, and Subroutines

Page 17

© Hitachi Vantara Corporation 2020. All Rights Reserved

Table 12: Should I Use a Mapping (sub-transformation) Step?

Reasons to Use Mapping Details

Series of steps repeated across
many transformations

If there is a series of steps repeated across multiple
transformations, then a Mapping (sub-transformation) can
help lessen maintenance costs.

Parameters can be passed
This step can accept parameters from the main
transformation and pass them down to the mapping, if you
configure the Parameters tab appropriately.

Multiple Inputs/Outputs can be
configured

You are not limited to a single path for the mapping
because you can send different inputs to different
Mapping input specifications, and different outputs to
different Mapping output specifications.

Transformation Executor
Transformation executor, like a Copy rows to result step, performs the subsequent
transformation for every input row. However, Transformation executor lets you do this

within your main transformation instead of coming back out to the job level and configuring a
following transformation entry.

Features of Transformation executor include the ability to:

• Send more than one stream to it.
• Launch multiple copies to gain parallel processing.
• Pass step parameters (like for Mapping (sub-transformation)).

The example in Figure 14 is taken from a project where we were serializing up to five different files
which all needed to be combined into one file at the end. In the first part, we are doing checks for
whether the file exists, using the File exists and Filter rows steps (fe-bld_mbr_1, fr-exists). Then,
because the top two streams have the same desired file input and output structure, they each lead
into their own Transformation executor (te-deserialize_member).

The bottom left of Figure 14 displays the dialog box for this step. We are passing a parameter,
FILE_NAME_SER, and in the middle right of Figure 14 we have configured our Result rows tab,
stipulating that The target step for output rows is ac-loop_order_placeholder. The expected
list of fields from the result rows is listed below that.

Figure 14’s bottom right shows the Result rows tab configured for te-deserialize_member_ben.
Notice that its target step is sv-mbr_ben_to_sort. That is all we need to configure for these
Transformation executors. We did increase the number of copies to start for each to be x2 and x3,
to obtain that parallel processing advantage.

Finally, the transformation that the Transformation executor points to is very simple. See the
top right of Figure 14. We are taking the parameter being passed, ${FILE_NAME_SER}, into the
Deserialize from file step, and then copying the rows back out to the main transformation for
processing.

PDI Standards for Lookups, Joins, and Subroutines

Page 18

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 14: Transformation Executor Example

In certain cases, you may not need to come back out to the main transformation for further
processing. The code line can certainly end within the transformation that the Transformation
executor is referencing. You would still need to configure the Result rows tab in the main
transformation, but you can set that up to point to a Dummy (do nothing) step:

Figure 15: Transformation Executor Example 2

PDI Standards for Lookups, Joins, and Subroutines

Page 19

© Hitachi Vantara Corporation 2020. All Rights Reserved

Table 13: Should I Use a Transformation Executor Step?

Reasons to Use Transformation Executor Details

Replaces Copy Rows to Result
Consider using Transformation executor in
cases where you would otherwise use a Copy rows
to result step.

Parameters can be passed

This step can accept parameters from the main
transformation, and pass them down to the called
transformation. Configure the Parameters tab to
do this.

Configure Execution results for error
handling

If the called transformation has an error, this step
will not abort. The tab of Execution results must be
configured for error handling. This includes having
access to the full log for the called transformation.

Handles more than one stream
If the record structures are the same, this step can
ingest more than one stream at a time.

Parallel processing
The step allows for launching more than one copy
to start, to take advantage of parallel processing.

Job Executor
Job executor, like a Copy rows to result step, performs the subsequent job for every input
row. However, Job executor lets you do this within your main transformation instead of
coming back out to the job level and configuring an ensuing job entry.

Job executor works just like, and has all the same options as, Transformation executor. The only
difference is that the step launches a job rather than a transformation.

In the example in Figure 16, we are tasked to perform a migration process that moves data from a set
of MySQL tables and loads it to the same tables in MSSQL, with only slight differences. The top portion
of the figure represents the main transformation where we use a Table input to pull metadata from
the MSSQL information_schema_columns table. This information drives the construction of the
SQL statement used to pull from MySQL.

Next, we group the column names separated by a comma by the table name, and send the columns
and table name into the j_mysql_admin_migration Job executor as parameters. All of the
processing for pulling data from MySQL and loading it into MSSQL will occur in the called job
j_mysql_admin_migration; therefore, we do not need to configure the Execution Results and
Result Rows tabs.

Lastly, in the called job, we write to the log wtl-table_load to document what table is being
processed, and use a transformation t_mysql_admin_migrate_tbls to receive the columns and
table parameters to pull the data from MySQL and write to a text file. Then, we bulk load the text file
to MSSQL with sql-bulk_load_mssql, and finally remove the text file that was created for that
table with df-table_name_csv.

PDI Standards for Lookups, Joins, and Subroutines

Page 20

© Hitachi Vantara Corporation 2020. All Rights Reserved

Figure 16: Job Executor Example

PDI Standards for Lookups, Joins, and Subroutines

Page 21

© Hitachi Vantara Corporation 2020. All Rights Reserved

Table 14: Should I Use a Job Executor Step?

Reasons to Use Job Executor Details

Can replace Copy rows to
result

Consider using Job executor in cases where you would
otherwise use a Copy rows to result step.

Parameters can be passed

This step can accept parameters from the main transformation
and pass them down to the called transformation. Configure the
Parameters tab for this. The checkbox Inherit all variables
from the transformation means that you do not have to list
the variables here; they will be passed down.

Configure Execution results for
error handling

If the called job has an error, this step will not abort. The
Execution results tab must be configured for error handling.
This includes having access to the full log for the called job.

Handles more than one stream
If the record structures are the same, this step can ingest more
than one stream at a time.

Parallel processing
This step allows for launching more than one copy to start to
take advantage of parallel processing.

Related Information
Here are some links to information that you may find helpful while using this best practices document:

• Components Reference
• Pentaho Data Integration Best Practices Library

Finalization Checklist
This checklist is designed to be added to any implemented project that uses this collection of best
practices, to verify that all items have been considered and reviews have been performed. (Compose
specific questions about the topics in the document and put them in the table.)

Name of the Project:___

Date of the Review:__

Name of the Reviewer:___

Item Response Comments

Did you choose the best
lookup method for your
purposes?

YES________ NO________

Did you choose the best join
method for your purposes?

YES________ NO________

Did you consider subroutines,
and use them if possible?

YES________ NO________

https://help.pentaho.com/Documentation/9.0/Setup/Components_Reference
https://support.pentaho.com/hc/en-us/articles/360000307943-Pentaho-Data-Integration

	Overview
	Before You Begin
	Other Prerequisites
	Use Cases

	Lookups
	Database Join
	Database Lookup
	Stream Lookup
	Dimension Lookup/Update

	Joins
	Join Rows (cartesian product)
	Merge Join
	Merge Rows (diff)

	Subroutines
	Mappings
	Transformation Executor
	Job Executor

	Related Information
	Finalization Checklist

