

Big Data On-Cluster Processing

with Pentaho MapReduce

Change log (if you want to use it):

Date Version Author Changes

Contents
Overview .. 1

Pentaho Deployment Architecture Recommendations .. 2

Hadoop and PDI Integration ... 2

Writing to HDFS .. 3

Running Multiple Pentaho Versions .. 3

Current On-Cluster Processing Options .. 4

Orchestration .. 4

Pentaho MapReduce ... 4

Best Practices for MapReduce ... 5

Extending MapReduce Concepts with Pentaho Implementation Architecture 6

Recommendations for Database Connections .. 6

Processing Big XML Files ... 7

Best Practices for Joins and Data ... 7

Best Practices for Writing to Multiple File Destinations .. 8

Best Practices for Compression ... 8

Snappy Compression Setup ... 9

Custom JARs .. 10

Pentaho Application Monitoring .. 10

PDI Cluster on YARN .. 10

Write Better PDI Jobs and Transformations ... 12

General PDI Best Practices .. 12

PDI Arguments, Variables, and Parameters ... 12

Production Environment Performance ... 13

Working with Heavy Loads .. 14

Using Mappers and Combiners .. 14

Working with Multiple Jobs and Large Datasets .. 14

Using Reducers ... 15

MapReduce JVM Settings .. 15

Operations Mart ... 15

Related Information ... 16

Finalization Checklist .. 17

This page intentionally left blank.

Big Data On-Cluster Processing with Pentaho MapReduce

Page 1

© Hitachi Vantara Corporation 2019. All Rights Reserved

Overview
This document covers some best practices to push exchange, transform, and load (ETL) processes to
Hadoop-based implementations. When working on big data implementations, we must consider
concepts like data locality, distributed processing, resource assignment isolation, and processing
queue.

The Pentaho Data Integration (PDI) tool includes multiple functions to push work to be done on the
cluster using distributed processing and data locality acknowledgement. This document covers use
cases and situations where different methods are recommended.

The intention of this document is to speak about topics generally; however, these are the specific
versions covered here:

Software Version(s)

Pentaho 7.x, 8.x

The Components Reference in Pentaho Documentation has a complete list of supported software and
hardware.

https://help.pentaho.com/Documentation/8.2/Setup/Components_Reference

Big Data On-Cluster Processing with Pentaho MapReduce

Page 2

© Hitachi Vantara Corporation 2019. All Rights Reserved

Pentaho Deployment Architecture
Recommendations
The Pentaho Server needs to communicate with the Hadoop Distributed Filesystem (HDFS) name
nodes and data nodes, resource manager, Hive server, Impala server, and Oozie, based on the
activities to be performed by the ETL designed process.

Figure 1: PDI Server Deployment

The diagram above shows the importance of highlighting PDI clients installed in the edge nodes. There
are also PDI clients outside the cluster nodes that have network access to the clusters. For more
information on these topics, see Pentaho Tools and Integrated Authentication Methods in the Security
for Pentaho library.

Hadoop and PDI Integration
Pentaho MapReduce relies on Hadoop’s distributed cache to distribute PDI’s libraries and plugins
across the cluster. PDI will upload all its dependent JARs to HDFS in the following target directory when
you initially run a PDI application on a Hadoop cluster:

hdfs://your.hdfs-host.com:port/opt/pentaho/mapreduce/[pdi-version-hadoop-
version]

PDI will not upload anything if the target HDFS directory already exists. The HDFS directory is set in
the plugin.properties files with a parameter of pmr.kettle.dfs.install.dir. The
plugin.properties file for individual Pentaho applications are listed here:

https://support.pentaho.com/hc/en-us/articles/360001994091-Security-for-Pentaho
https://support.pentaho.com/hc/en-us/articles/360001994091-Security-for-Pentaho

Big Data On-Cluster Processing with Pentaho MapReduce

Page 3

© Hitachi Vantara Corporation 2019. All Rights Reserved

Table 1: plugin.properties Locations

Target Plugin.Properties Location

Pentaho Server (Pentaho
7.x and later)

[PENTAHO_INSTALL_HOME]/server/pentaho-
server/pentaho-
solutions/system/kettle/plugins/pentaho-big-data-
plugin/plugin.properties

DI Server (Pentaho 6.x
and earlier)

[PENTAHO_INSTALL_HOME]/server/data-integration-
server/pentaho-
solutions/system/kettle/plugins/pentaho-big-data-
plugin/plugin.properties

BA Server (Pentaho 6.x
and earlier)

[PENTAHO_INSTALL_HOME]/server/biserver-ee/pentaho-
solutions/system/kettle/plugins/pentaho-big-data-
plugin/plugin.properties

Report Designer
[PENTAHO_INSTALL_HOME]/design-tools/report-
designer/plugins/pentaho-big-data-
plugin/plugin.properties

Spoon/Pan/Kitchen
[PENTAHO_INSTALL_HOME]/design-tools/data-
integration/plugins/pentaho-big-data-
plugin/plugin.properties

Metadata Editor
[PENTAHO_INSTALL_HOME]design-tools/metadata-
editor/plugins/pentaho-big-data-
plugin/plugin.properties

Writing to HDFS

We recommend giving the user who executes PDI permission to write to the root HDFS directory when
you set up the HDFS. You can manually create the /opt/pentaho directory and give the PDI user
write permission, and you can also change the pmr.kettle.dfs.install.dir parameter to a
location with write permission. See the plugin.properties file for more details about the directory
structure.

Running Multiple Pentaho Versions

PDI will allow you to run multiple versions on the same Hadoop cluster. This setup will let you test PDI
upgrades.

Delete the pmr.kettle.dfs.install.dir/[pdi-version-hadoop-version] directory
in HDFS if you change PDI’s dependent JARs with a patching process, or apply JAR replacements
where the Hadoop version or PDI version does not change. This will allow the new JARs to be
uploaded to HDFS during the next run of a Pentaho MapReduce.

Big Data On-Cluster Processing with Pentaho MapReduce

Page 4

© Hitachi Vantara Corporation 2019. All Rights Reserved

Current On-Cluster Processing Options
This section provides information about the orchestration process and demonstrates how to send
work to the cluster.

• Orchestration
• Pentaho MapReduce
• Custom JARs
• PDI Cluster on YARN

Orchestration
PDI offers multiple ways to push work to the cluster. Some of these options are agnostic tools. PDI
works as an orchestrator that calls cluster processes. It then waits for a response and coordinates the
next steps based on a SUCCESS or FAIL result. This method does not have control or influence on
how the cluster executes the called process. However, Pentaho provides the cluster with the user
credentials for any resource isolation configuration that is in place for the calling user.

Figure 2: PDI Orchestration

The orchestration process runs on the server or node where the PDI process was started. The machine
will orchestrate the activities if the job is executed from an end user or developer machine. Any
shutdown or kill of the application on the machine will stop the job submitted.

Pentaho MapReduce
Pentaho MapReduce job steps wrap PDI transformations into the Hadoop MapReduce architecture.
The transformations are classified as mapper transformations and reducer transformations.

Big Data On-Cluster Processing with Pentaho MapReduce

Page 5

© Hitachi Vantara Corporation 2019. All Rights Reserved

Figure 3: File Parsing

Find standard and common usage of the MapReduce functionality at the following:

• Pentaho MapReduce workflow
• Create Mapper and Reducer for Aggregate Designer
• Create Mapper Transformation to Parse Weblog File

Best Practices for MapReduce

Our recommendations for MapReduce include the following:

For Pentaho MapReduce job steps:

1. Check the Enable Blocking options in the Cluster tab if you want to wait for the MapReduce
process to complete. If you do not, the MapReduce process will start in Hadoop and return
as complete.

2. Hadoop may ignore the number of mappers that you want to run. However, you can view
the number of reducers on Pentaho’s Hadoop Wiki.

3. Hadoop will not run the shuffle and sort phase if you set the number of reducers to zero.
The unsorted mapper output will be moved to the configured output directory.

4. The shuffle and sort phase will be run using the Identity Reducer. This will happen if you do
not provide a reducer implementation, and if the number of reducers is not set, or is greater
than zero. This will cause the mapper output to be shuffled and sorted and output to the
configured directory.

For Hadoop Input steps:

1. Withdraw the data from the HDFS and publish it to an external system or database.
2. Make sure that the maximum volume of the data you are pulling from the HDFS is medium.

Write MapReduce applications if you want to process large files of data that are on HDFS.

Using the Hadoop File Input step to withdraw the data and process it in PDI is not
recommended.

https://help.pentaho.com/Documentation/8.2/Data/Hadoop/PDI_with_Hadoop
https://wiki.pentaho.com/display/BAD/Create+Mapper+and+Reducer+for+Aggregate+Dataset
https://wiki.pentaho.com/display/BAD/Create+Mapper+Transformation+to+Parse+Weblog+File
http://wiki.apache.org/hadoop/HowManyMapsAndReduces

Big Data On-Cluster Processing with Pentaho MapReduce

Page 6

© Hitachi Vantara Corporation 2019. All Rights Reserved

Extending MapReduce Concepts with Pentaho Implementation Architecture

Pentaho’s ETL core engine is distributed and used in the implementation of Hadoop MapReduce
functionality. This gives end users the ability to use Pentaho’s tools while running a mapper, combiner,
or reducer transformation. The Hadoop framework will manage data locality, node assignment, and
READ input and WRITE output files. Pentaho’s engine can then collect the information from the READ
input file. The information will be delivered to the Hadoop writer using any of the existing steps while
running on a mapper or reducer.

There are no limitations or rules that can block a mapper and reducer. Users and developers can add
full big file reads, database connections to external sources, and calls to WebServices.

Keep these best practices in mind when working with MapReduce:

• Create a process with mapper only.
o You can write a mapper only transformation that can read an input file, do row

filtering and transformations of lookups, and write the result by setting the reducer
to zero.

o Keep in mind that there can be multiple mappers reading parts of the input file;
therefore, actions like sorting, or any task that suggests you have the full file, is not a
good approach.

• Mapper transformations are required to have a Hadoop input and a Hadoop output, but
keep these things in mind:

o Input can be a list of actions to be performed, like WebServices calls and emails.
Output can be empty.

o Input can be empty (0 rows or 1 record) and the output can produce millions of
rows, whereas real input can be anything from self-generated to external database
tables.1

Recommendations for Database Connections

Do not connect to traditional databases in your mappers and reducers. You can have thousands of
mappers and reducers running in parallel, but having all of them hit your database simultaneously
can cause an overload of the database and network. There are a limited number of connections that
it can handle. Making database connections in a mapper that is instantiated thousands of times will
exceed the maximum number of connections that it can handle.

Use alternative technologies, such as distributed key-value stores (HBase, MongoDB, Cassandra), if
you need to perform a lookup as part of your MapReduce.

1 Set number of mappers to 1 and reducer to 0 and use org.apache.hadoop.mapred.lib.NLineInputFormat as
InputFormat. This reads line by line and does not use data locality for the mapper executing node assignments.

Big Data On-Cluster Processing with Pentaho MapReduce

Page 7

© Hitachi Vantara Corporation 2019. All Rights Reserved

Processing Big XML Files

XML files have a few challenges in the big data world. However, there are several solutions, including
those in Parsing XML on PDI in the Big Data and Pentaho library, in place to handle them.

The Apache Mahout project introducers an input format that can be included in Pentaho’s libraries
for use in MapReduce implementations. More information can be found at Using a Custom Input or
Output Format in Pentaho MapReduce and in the XML Input Format section of Parsing XML on PDI in
the Big Data and Pentaho library.

In the Mahout approach:

• XML files cannot be split, and they are not suitable for the MapReduce TextInputFormat
format. Apache’s Mahout Project has two classes capable of processing XML files as input
formats for MapReduce. The one we use is as follows:

org.apache.mahout.classifier.bayes.XmlInputFormat

This InputFormat needs to be specified with an open and close tag defined as
xmlinput.start and xmlinput.end in the Pentaho MapReduce User Defined section.

• XmlInputFormat looks for complete XML sections with START and END tags.
XmlInputFormat will skip records if the file is split, until it reaches a new START tag.

• The result of this XmlInputFormat is a Key/Value => Key: file offset and Value: XML
section. That is now easy to process with the Pentaho Get Data from XML step.

Best Practices for Joins and Data

Avoid doing database lookups or PDI joins inside a mapper or a reducer. We recommend having both
datasets you want to join reside in the HDFS when doing lookups for data that resides in a Hadoop
cluster. You have several options when using PDI and Hadoop cluster technology to join the datasets.
The solution depends on the amount of data that is in the datasets:

The data row volumes are general guidelines, and performance is also affected by the row sizes.

Table 2: Joins and Data

Method Details

PDI’s Hadoop File
Input with Stream
Value Lookup Step

This solution is best when the lookup data is less than 10KBs of rows. Put
the lookup file in Hadoop’s distributed cache.

PDI’s HBase Input
Step with Stream
Value Lookup Step

This solution is best when the lookup data is less than 100KBs of rows.
This will perform full-range scans of the HBase tables. The scans will be
slow if those tables are large. HBase configuration will also impact
performance.

https://support.pentaho.com/hc/en-us/articles/360002913871-Big-Data-and-Pentaho
http://mahout.apache.org/
https://wiki.pentaho.com/display/BAD/Using+a+Custom+Input+or+Output+Format+in+Pentaho+MapReduce
https://wiki.pentaho.com/display/BAD/Using+a+Custom+Input+or+Output+Format+in+Pentaho+MapReduce
https://support.pentaho.com/hc/en-us/articles/360002913871-Big-Data-and-Pentaho
http://wiki.pentaho.com/display/EAI/Get+Data+From+XML

Big Data On-Cluster Processing with Pentaho MapReduce

Page 8

© Hitachi Vantara Corporation 2019. All Rights Reserved

Method Details

Directly use HBase
API with PDI’s User-
Defined Java Class

This solution is best when the lookup data has 1MB of rows or less, and is
in HBase tables. It is also best if you are performing single item lookups
against large HBase tables. You will need to use the HBase Java API in the
Pentaho User Defined Java Class (UDJC). You must be familiar with the
HBase API features to get the best performance. Use HBasePools as a
static variable, and try to apply as many filters as possible in a single
request to minimize the outgoing calls to HBase. HBase configuration will
also impact performance.

MapReduce Joins

This solution is best when both the number of input data rows and the
total amount of lookup data is large. Divide the issue evenly, and ensure
the join is done at Hive level, storing the result in a staging location. The
rest of the processing, or other lookups, should be done in MapReduce.
Do not put the logic in the SQL join. This is normally a big maintenance
point if too much logic is added.

For more information about MapReduce joins, please see Joins with MapReduce and Parsing XML on
PDI from the Big Data and Pentaho library.

Best Practices for Writing to Multiple File Destinations

PDI does not support Hadoop’s native feature that provides an output formatter that allows you to
write MapReduce output to multiple destinations. Instead, write output data to multiple destinations
within a MapReduce. This solution is best for writing multiple mappers or reducers to create multiple
files in HDFS. This is probably the easiest way, but would be slowest because you would need to go
through the entire dataset multiple times.

To do this, within the mapper or reducer, create multiple files in HDFS and write data out to these files
as needed using the Pentaho Hadoop Output step. Each instance of mapper or reducer must make
sure that the filename you create in HDFS is unique in the HDFS namespace.

Best Practices for Compression

You should enable compression for various stages of MapReduce because Hadoop applications
handle large datasets. Hadoop applications will mitigate the following problems by using
compression:

• MapReduce is disk I/O intensive: Using compression significantly reduces the amount of
data that is stored in HDFS and intermediate processing files.

• MapReduce is network intensive: You can improve performance by reducing the amount
of data that needs to be replicated by HDFS, and by minimizing the number of intermediate
files sent over the network during MapReduce.

https://chamibuddhika.wordpress.com/2012/02/26/joins-with-map-reduce/
https://support.pentaho.com/hc/en-us/articles/360002913871-Big-Data-and-Pentaho

Big Data On-Cluster Processing with Pentaho MapReduce

Page 9

© Hitachi Vantara Corporation 2019. All Rights Reserved

Table 3: Suggested Compression Methods

Method Details

Use Snappy
Compression
Codecs with
Container File
Formats

Because Snappy alone does not support splitting, and requires help when
compressing large input files, try using Snappy compression codecs with
container file formats such as Sequence File, RCFile, or Avro, that support
splitting and compression. Hadoop also supports indexed LZO which is relatively
fast and supports splitting, but you will need to separately install the appropriate
libraries on your Hadoop cluster because the indexed LZO implementation is
GPL-licensed. Visit Devops Blog for information about compiling and installing
Hadoop-LZO compression support module.

Preprocess
File by
Chunking

Preprocess the file by chunking it into smaller sizes, preferably to HDFS block
size. Otherwise you will effectively get a single mapper to process the entire file.
Store the files uncompressed. This solution is best if the compression algorithm
you choose for your input files does not support splitting.

The following Hadoop parameters only compress the intermediate mapper output:

• mapred.compress.map.output
• mapred.map.output.compression.codec

The final output of a MapReduce job is controlled by the following Hadoop parameters:

• mapred.output.compress
• mapred.output.compression.codec
• mapred.output.compression.type

Snappy Compression Setup

CDH4+ and many of the newer distributions ship Snappy compression as part of their distribution.
Hadoop can be configured to use Snappy compression for MapReduce output. It is a good idea to
have intermediate files compressed using Snappy. This will have the following benefits:

• Reduced temporary storage requirements.
• Significantly reduced network traffic during the shuffle or sort phase of MapReduce

processing.
• A good balance of compression, decompression, and speed when compared to other

compression technologies.

The following parameters should be set before using Snappy to compress intermediate files
generated by the mapper. In PDI, they are set in the User Defined tab of the Pentaho MapReduce
step:

• mapred.compress.map.output = true
• mapred.map.output.compression.codec =

org.apache.hadoop.io.compress.SnappyCodec

The following parameters should also be set in order to compress the final output of MapReduce
using Snappy compression. In PDI, they are set in the User Defined tab of the Pentaho MapReduce
step:

http://www.devops-blog.net/hadoop/compiling-and-installing-hadoop-lzo-compression-support-module

Big Data On-Cluster Processing with Pentaho MapReduce

Page 10

© Hitachi Vantara Corporation 2019. All Rights Reserved

• mapred.output.compress = true
• mapred.output.compression.codec =

org.apache.hadoop.io.compress.SnappyCodec
• mapred.output.compression.type = block

To show these options in Spoon, various input and output steps from the Snappy libraries must be
installed on the client machine and have Spoon include them as part of its configuration. Please see
Extracting Data from Snappy Compressed Files for steps on how to do this.

Custom JARs
In addition to PDI’s dependent JARs, many PDI applications require third-party Java libraries to perform
tasks within PDI jobs and transformations. These libraries must be included in the classpath of
Hadoop mappers and reducers so PDI applications can use them in the Hadoop cluster. One solution
for this is to use the features detailed in the pmr.kettle.additional.plugins configuration found
at Pentaho MapReduce.

However, many companies lock down the installations of Pentaho software and do not give users the
ability to edit or add files in Pentaho solutions. They have multiple people writing applications, and
each application has its own sets and versions of libraries. In this type of environment, the best way
to add custom libraries is to copy all dependent JARs to Hadoop’s distributed cache and add the
following parameters to the Pentaho MapReduce job step’s User Defined tab:

• mapred.cache.files
• mapred.job.classpath.files

The following are examples of what can be implemented with custom JARs:

• Custom input or output format in Pentaho MapReduce
• Custom practitioner in Pentaho MapReduce

Pentaho Application Monitoring

Pentaho provides real-time performance statistics by using the output step metrics. This can be used
to extract step-level statistics.

You can only get statistics about specific mappers, reducers, or combiners if you use a transformation
that works within a Hadoop mapper, reducer, or combiner in the Pentaho MapReduce job step.

You will not get statistics that are aggregated for all the mapper, combiner, and reducer instances. For
that, you will need a mapper or reducer store instance data to an external data store, such as HBase
or Database. Aggregate this data to get metrics for the entire Hadoop job.

PDI Cluster on YARN
The PDI YARN cluster uses the YARN resource manager assignment and resource isolation functions
to start multiple Carte servers inside a Hadoop cluster. Once the Carte servers are running, the
behavior and use cases are the same as for any other manually deployed Kettle Carte cluster.

https://wiki.pentaho.com/display/BAD/Pentaho+MapReduce

Big Data On-Cluster Processing with Pentaho MapReduce

Page 11

© Hitachi Vantara Corporation 2019. All Rights Reserved

Furthermore, Carte servers can read and write from within or outside of the Hadoop cluster, to or
from files, relational databases, and others. Pentaho’s Carte user documentation has more helpful
information, as well as documentation on using Carte clusters.

The YARN cluster is most useful in cases such as:

• Data ingestion processes
• Real-time ongoing transformation
• Assignment of full job and transformation to be executed in one Carte server
• Use of Hadoop YARN as an escalation platform for PDI transformations when data is not

stored in Hadoop.

We recommend you use Hadoop cluster data locality-aware processes, like MapReduce, for all
other use cases where Hadoop data needs to be processed.

Figure 4: YARN Transformation Process

http://wiki.pentaho.com/display/EAI/Carte+User+Documentation
https://help.pentaho.com/Documentation/8.2/Products/Data_Integration/Carte_Clusters

Big Data On-Cluster Processing with Pentaho MapReduce

Page 12

© Hitachi Vantara Corporation 2019. All Rights Reserved

Write Better PDI Jobs and Transformations
This section contains information and best practices for creating better PDI jobs and transformations.

You can find details on these topics in the following sections:

• General PDI Best Practices
• PDI Arguments, Variables, and Parameters
• Production Environment Performance
• Working with Heavy Loads
• Using Mappers and Combiners
• Working with Multiple Jobs and Large Datasets
• Using Reducers
• MapReduce JVM Settings
• Operations Mart

General PDI Best Practices
Note that:

• Subtransformations are not supported in transformations that are used as mappers,
reducers, or combiners.

• Pentaho does not have native support for performing MapReduce directly on MongoDB in a
MongoDB cluster.

PDI offers three steps to write your own processing code:

1. Modified JavaScript value
2. User defined Java expression
3. User defined Java class (UDJC)

We recommend that all processing that must be done for each row use UDJC instead of Modified
JavaScript value or User defined Java expression, for best performance. UDJC can perform up to
ten times faster than Modified JavaScript value.

PDI Arguments, Variables, and Parameters
Do not use hardcoded variables and environment settings, such as filepaths and Hadoop cluster
configuration. Use only variables for those settings. This will allow you to quickly move among
different environments without having to change the job or transformation. Variables in the Pentaho
Documentation has more information on this.

https://help.pentaho.com/Documentation/8.2/Products/Data_Integration/Data_Integration_Perspective/Run_Modifiers/Variables

Big Data On-Cluster Processing with Pentaho MapReduce

Page 13

© Hitachi Vantara Corporation 2019. All Rights Reserved

We recommend that you store variables in the following locations:

Table 4: Variable Storage Locations

Variable Location

Global Variable

Store in kettle.properties and do not change between runs.
Typically defines your execution environment such as development,
QA, and production, where you will use the same variables, but with
different values, for each environment.

Transformation Variable

Right-click on the canvas of a job or transformation and select Job
or Transformation settings. The scope of a variable is at the job or
transformation level. These can be set either at command line or at
Spoon execute GUI. They can also be passed from jobs to
transformations.

Application-Specific
Variable

Place the variable in a configuration file, such as
config.properties, and read it in as the first step of the job
using the Set Variable entry.

Variables can be passed from a Pentaho job to a transformation that functions as a mapper or
reducer. However, please note the following limitations:

• Variables cannot be set in a mapper or a reducer and be passed back to parent jobs.
• Variables cannot be set in a mapper and passed to a reducer.

Production Environment Performance
This section provides information on performance for production environments:

Table 5: Production Environment Performance Improvements

Recommendation Details

Use data such as raw input data,
lookup and join data, and output data.

This solution is best for testing your application with
similar-sized datasets that you expect in your
production environment.

Tune the Hadoop cluster, and any
related technologies, to fit your load
and application scenarios.

Performance is depending on your Hadoop technology
configurations.

Do not perform row-level logging in
production environments that use
large datasets.

Row-level logging can degrade performance.

Parallelize steps by starting multiple
instances of them.

If you are expecting some steps to take a long time to
complete, try parallelizing. Do not start multiple
instances of steps that write to the same resource, such
as file input/output. Be aware of extra resources (disk,
CPU, memory, and so on) used when parallelizing as this
may affect them, and adjust accordingly.

Big Data On-Cluster Processing with Pentaho MapReduce

Page 14

© Hitachi Vantara Corporation 2019. All Rights Reserved

Working with Heavy Loads
This section offers information for working with heavy loads:

Table 6: Recommendations for Heavy Workloads

Recommendation Details

Do not install Pentaho products on an
NFS mount.

Installation on an NFS mount will work for small loads,
but will perform improperly under heavy loads. Pentaho
engineering does not test its products with the non-
supported NFS technology.

Do not use the Pentaho repository if
you are using a Carte cluster and have
thousands of transformations and jobs
and will be running more than 100
jobs and transformations
simultaneously.

Communication between the Carte server and the
repository is overactive and can cause performance
issues under heavy loads. We recommend you use a
file-based repository instead for this type of load.

Decrease the number of simultaneous
rows your transformation processes,
or increase the JVM heap space and
tune JVM garbage collection.

This solution works best if the size of your rows is more
than 100 kilobytes.

Old JARs you are replacing must be
deleted or moved outside of any
directory used by Pentaho.

Since Pentaho products will load all files in directories
that it reads for JARs, if you do not delete old JARs or
move them outside of any directory Pentaho uses, you
will not be able to load classes properly.

Using Mappers and Combiners
This section covers tips for mappers and combiners:

• The mapper will receive a random set of values. Do not assume that all values will flow
through the same mapper.

• Hadoop decides when to run combiners, so do not expect that a combiner will always run.
Combiners may or may not run, even if you specify one.

Working with Multiple Jobs and Large Datasets
You may need more space, depending on how many simultaneous jobs you are running, if you are
using a Carte cluster that connects to an Enterprise Edition (EE) repository. For Linux systems, increase
the open files limit for the user who executes PDI to around 16K.

Big Data On-Cluster Processing with Pentaho MapReduce

Page 15

© Hitachi Vantara Corporation 2019. All Rights Reserved

Using Reducers
When using reducers:

• Code the reducer. All the values for the same key will flow through the same reducer.
Reducer logic should presume operations for one key at a time.

• A reducer gets all data associated with a single key. Do not expect a reducer to sum or count
values across keys.

MapReduce JVM Settings
Hadoop will create a new JVM for each instance of a mapper and a reducer, by default. You can set
various JVM options, such as -Xms and -Xmx, using the following Hadoop parameters.

Table 7: Hadoop Parameters

Parameter Details
mapred.child.java.opts Applies to all task JVMs, such as mappers and reducers.

mapred.map.java.opts If present, it is used over mapred.child.java.opts
for mapper.

mapred.reduce.child.java.opts If present, it is used over mapred.child.java.opts
for reducer.

These parameters can be set cluster-wide in mapred-site.xml. In addition, if you want to override
the system settings on a per-job basis, you can also set them in PMR under the User Defined tab.

Operations Mart
Do not collect the operational data using Pentaho Operations Mart (Ops Mart) for transformations
that are used as mappers or reducers, and Hadoop jobs that have more than a few mapper or reducer
instances.

When transformations are configured to use Ops Mart, they will open a connection to the database
to add a record for collected statistics. When this is done in a Hadoop cluster, you could have
thousands of mappers or reducers opening connections to the database and overwhelming it with
too many connections.

To collect statistics, you can try this alternative:

• Write the output of the output steps metrics to a file in HDFS. Be sure that the filename is
unique for each mapper and reducer instance.

• Alternatively, you can put the data into HBase, MongoDB, or Cassandra.
• Write a Pentaho MapReduce application that will aggregate the data and publish the

statistics you want.
• Alternatively, take the data and populate the Ops Mart database.

Big Data On-Cluster Processing with Pentaho MapReduce

Page 16

© Hitachi Vantara Corporation 2019. All Rights Reserved

Related Information
Here are some links to information that you may find helpful while using this best practices document:

• Pentaho
o Big Data and Pentaho Library
o Carte User Documentation
o Components Reference
o Create Mapper and Reducer for Aggregate Designer
o Create Mapper Transformation to Parse Weblog File
o Get Data from XML Step
o Pentaho MapReduce
o Pentaho MapReduce Workflow
o Security for Pentaho Library
o Using Carte Clusters
o Using a Custom Input or Output Format in Pentaho MapReduce
o Variables

• Apache
o Apache Mahout Project
o Hadoop Wiki

• Blogs
o Compiling and Installing Hadoop-LZO Compression Support Module
o Joins with MapReduce

https://support.pentaho.com/hc/en-us/articles/360002913871-Big-Data-and-Pentaho
http://wiki.pentaho.com/display/EAI/Carte+User+Documentation
https://help.pentaho.com/Documentation/8.2/Setup/Components_Reference
https://wiki.pentaho.com/display/BAD/Create+Mapper+and+Reducer+for+Aggregate+Dataset
https://wiki.pentaho.com/display/BAD/Create+Mapper+Transformation+to+Parse+Weblog+File
http://wiki.pentaho.com/display/EAI/Get+Data+From+XML
https://wiki.pentaho.com/display/BAD/Pentaho+MapReduce
https://help.pentaho.com/Documentation/8.2/Data/Hadoop/PDI_with_Hadoop
https://support.pentaho.com/hc/en-us/articles/360001994091-Security-for-Pentaho
https://help.pentaho.com/Documentation/8.2/Products/Data_Integration/Carte_Clusters
https://wiki.pentaho.com/display/BAD/Using+a+Custom+Input+or+Output+Format+in+Pentaho+MapReduce
https://help.pentaho.com/Documentation/8.2/Products/Data_Integration/Data_Integration_Perspective/Run_Modifiers/Variables
http://mahout.apache.org/
http://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://www.devops-blog.net/hadoop/compiling-and-installing-hadoop-lzo-compression-support-module
https://chamibuddhika.wordpress.com/2012/02/26/joins-with-map-reduce/

Big Data On-Cluster Processing with Pentaho MapReduce

Page 17

© Hitachi Vantara Corporation 2019. All Rights Reserved

Finalization Checklist
This checklist is designed to be added to any implemented project that uses this collection of best
practices, to verify that all items have been considered and reviews have been performed.

Name of the Project:___

Date of the Review:__

Name of the Reviewer:___

Item Response Comments

Is Pentaho MapReduce used in
the project?

YES________ NO________

Are external or customized
libraries required for
MapReduce?

YES________ NO________

Is it required to do joins of big
data sets? What method was
selected?

YES________ NO________

Is HBase or Cassandra used as
part of mapper or reducer?

YES________ NO________

Is PDI cluster on YARN used in
the project?

YES________ NO________

Is Avro format used? YES________ NO________

Is Parquet format used? YES________ NO________

Is compression used? YES________ NO________

	Overview
	Pentaho Deployment Architecture Recommendations
	Hadoop and PDI Integration
	Writing to HDFS
	Running Multiple Pentaho Versions

	Current On-Cluster Processing Options
	Orchestration
	Pentaho MapReduce
	Best Practices for MapReduce
	Extending MapReduce Concepts with Pentaho Implementation Architecture
	Recommendations for Database Connections
	Processing Big XML Files
	Best Practices for Joins and Data
	Best Practices for Writing to Multiple File Destinations
	Best Practices for Compression
	Snappy Compression Setup

	Custom JARs
	Pentaho Application Monitoring

	PDI Cluster on YARN

	Write Better PDI Jobs and Transformations
	General PDI Best Practices
	PDI Arguments, Variables, and Parameters
	Production Environment Performance
	Working with Heavy Loads
	Using Mappers and Combiners
	Working with Multiple Jobs and Large Datasets
	Using Reducers
	MapReduce JVM Settings
	Operations Mart

	Related Information
	Finalization Checklist

