
 

  

Tuning JVM Garbage 
Collection for Pentaho 



 

This page intentionally left blank. 



Contents 
Overview .............................................................................................................................................................. 1 

Before You Begin ............................................................................................................................................ 1 

Use Case: Memory Slowdown .................................................................................................................. 1 

Java Descriptions ................................................................................................................................................ 2 

What is JVM Garbage Collection? ................................................................................................................. 2 

JVM Compartments ........................................................................................................................................ 2 

Process-Dependent Memory Parameters ...................................................................................................... 3 

JVM Heap Space (-Xms and -Xmx) ................................................................................................................ 3 

JVM PermSize (Permanent Generation Memory) ...................................................................................... 3 

Sample JVM Settings ...................................................................................................................................... 3 

JVM Tools (Diagnostic, Monitoring, and Troubleshooting) ........................................................................... 6 

Key Points ........................................................................................................................................................ 6 

JVM Verbose Logging ..................................................................................................................................... 6 

VisualVM .......................................................................................................................................................... 7 

Related Information ........................................................................................................................................... 8 

Finalization Checklist.......................................................................................................................................... 8 

 

  



 
 

This page intentionally left blank. 



Tuning JVM Garbage Collection for Pentaho 

Page 1 

© Hitachi Vantara Corporation 2019. All Rights Reserved 

Overview 
The purpose of this document is to highlight the available options within the Oracle Java Development 
Kit (JDK) Java Virtual Machine (JVM) to improve overall speed and performance, particularly with 
garbage collection. 

Our intended audience is Pentaho administrators, or anyone with a background in Java who is 
interested in maximizing VM speed and performance. 

The intention of this document is to speak about topics generally; however, these are the specific 
versions covered here: 

Software Version(s) 

Pentaho 6.x, 7.x, 8.x 

The Components Reference in Pentaho Documentation has a complete list of supported software and 
hardware. 

Before You Begin 
Before beginning, use the following information to prepare for the procedures described in the main 
section of the document. 

This document assumes that you have knowledge of Pentaho and Java and that you have already 
installed JDK on your system. 

Use Case: Memory Slowdown  

Janice is a Pentaho administrator who wants to improve speed and performance in her installation.  

Janice decides to optimize JVM garbage collection. 

  

https://help.pentaho.com/Documentation/8.2/Setup/Components_Reference


Tuning JVM Garbage Collection for Pentaho 

Page 2 

© Hitachi Vantara Corporation 2019. All Rights Reserved 

Java Descriptions 
This section provides brief descriptions of each JVM compartment, and JVM’s garbage collection 
program. You will be given a breakdown of each compartment, how they are used, and what they are 
used for.  

You can find details on these topics in the following sections: 
• What is JVM Garbage Collection? 
• JVM Compartments 

What is JVM Garbage Collection? 
The garbage collector is a program which runs on the JVM and eliminates objects out of the memory 
that are no longer being used by a Java application. It is a form of automatic memory management.  

More information about JVM and JVM Garbage Collection can be found on Oracle’s JVM 
documentation.  

JVM Compartments 
Oracle’s documentation provides details on each compartment of the JVM, its uses, and its purposes. 
The following list provides quick access to each compartment description: 

• Program Counter (pc) Registers 
• Java VM Stacks 
• Heap 
• Method Area 
• Native Method Stacks 

 
Figure 1: JVM Compartments 

  

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.5.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.5.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.5.3
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.5.4
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.5.6


Tuning JVM Garbage Collection for Pentaho 

Page 3 

© Hitachi Vantara Corporation 2019. All Rights Reserved 

Process-Dependent Memory Parameters 
This section provides information on JVM heap space, permanent generation memory, and settings. 
You will learn how to control the amount of memory that has been distributed to your JVM, and how 
to store class definitions with their appropriate size. Topics covered in this section are as follows: 

• JVM Heap Space 
• JVM PermSize 
• Sample JVM Settings 

JVM Heap Space (-Xms and -Xmx) 
The -Xms and -Xmx control the amount of heap memory your application’s JVM is allocated. Keep in 
mind that the heap memory, as defined by -Xms and -Xmx, is not the total memory used by a JVM. 
The total memory includes heap, permanent generation memory, thread stacks, and shared libraries.  

If you have a machine with 96GB of memory, and you want to use all of it for processing 
KJB/KTR, run multiple instances of Kitchen, Pan, or Carte with a maximum of 24GB instead of 
using the total physical RAM for a single instance. 

You should also leave at least 33% additional memory for general operating systems and other 
applications. Keep in mind that Pentaho products are multi-threaded, so if there are a lot of threads, 
Pentaho can consume considerable memory when you have many steps in the transformation.  

JVM PermSize (Permanent Generation Memory) 

This information applies only to Pentaho 7.0 and earlier, and potentially 7.1, as this section does 
not apply to Java version 8 and up. 

The permanent generation memory is used to store class definitions. Because Pentaho applications 
typically load a lot of class definitions dynamically, it is best to increase this value. A sufficient size 
would be 256MB, and 512MB to 1024MB for server JVMs.  

Setting -XX:PermSize and -XX:MaxPermSize will typically give better performance. Oracle’s help 
center and Java SE documentation have more information on this topic. 

Sample JVM Settings 
Java applications usually require JVM tuning. The following sample settings should be considered for 
server applications.  

Keep in mind that the stack size is in KB, not MB or GB. If the stack size gets too large and you 
launch threads, it may cause significant problems. Stack size should be as small as you can 
make it, while still having everything work well. 

http://docs.oracle.com/cd/E56607_01/doc.301/e56610/sa_gf_perf.htm#CONSA563
http://docs.oracle.com/cd/E56607_01/doc.301/e56610/sa_gf_perf.htm#CONSA563
http://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html


Tuning JVM Garbage Collection for Pentaho 

Page 4 

© Hitachi Vantara Corporation 2019. All Rights Reserved 

Table 1: Java Virtual Machine Settings 

Property Definition 

-server 
Selects server application runtime optimizations. The directory server 
will take longer to start, but will be more aggressively optimized for 
higher throughput. 

-Xms24G Sets the initial and minimum Java heap size. 

-Xmx24G Sets the maximum Java heap size, which can vary depending on the 
operating system you are running. 

-Xss256k 
Sets the thread stack size. Thread stacks are memory areas allocated 
for each Java thread for their internal use. This is where the thread 
stores its local execution state. 

-DJava.rmi.server. 
hostname=<external 
IP> 

The value of this property represents the hostname string that should 
be associated with remote stubs for locally created remote objects, to 
allow clients to invoke methods on the remote object. The default 
value of this property is the IP address of the local host, in dotted-
quad format. 

The values below are applicable as of this writing and regularly change. See the Java documentation 
for the most current recommendations. 

-Xxn512k Explicitly defines the size of the young generation. 

-XX:PermSize=256m 

This property value may need to change based on your 
implementation. PermSize is additional to the -Xmx value set by the 
user on the JVM options. MaxPermSize allows the JVM to grown the 
PermSize to the specified amount. 

-XX:MaxPermSize= 
1024m 

JDK 1.7 Only 
(deprecated in JDK 1.8) 

Size of the permanent generation (5.0 and newer: 64-bit VMs are 
scaled 30% larger; 1.4 amd64: 96m; 1.3.1 -client: 32m). This is 
applicable only for Pentaho versions prior to 8.0. 

-XX:+ExplicitGC 
InvokesConcurrent 

Enables the concurrent marking task within CMS collector to perform 
in parallel with multiple processors, which reduces the duration and 
enables better support applications with larger number of threads 
and high object allocation rates, particularly on large multiprocessor 
machines. 

-XX:+ScavengeBefore 
FullGC 

Attempts to free up memory by scavenging youngest generation 
before doing a full garbage collection. 

-XX+CMSScavenge 
BeforeRemark 

Attempts scavenge before the concurrent mark sweep (CMS) remark 
step. This helps keep the remark phase short. 

-XX:+UseConcMark 
SweepGC 

This old generation collector does most of the work in the 
background without stopping application threads. 

-XX:+CMSParallel 
RemarkEnabled 

Allows remarking to be done in parallel to program execution; this is 
great for multi core servers. 

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html


Tuning JVM Garbage Collection for Pentaho 

Page 5 

© Hitachi Vantara Corporation 2019. All Rights Reserved 

Property Definition 

-XX:+UseCMS 
Initiating 
OccupancyOnly 

Indicates all concurrent garbage collection CMS cycles should start based 
on value of -XX:CMSInitiatingOccupancyFraction. Generally, it is 
advisable to use both  
-XX:CMSInitiatingOccupancyFraction=<percent> and  
-XX:+UseCMSInitiatingOccupancyOnly 

-XX:CMSInitiating 
OccupancyFraction 
=<percent> 

The percentage of CMS generation occupancy necessary to start a CMS 
collection cycle. A negative value means that CMSTriggerRatio is used. 

-XX:+UseConcMark 
SweepGC 

Sets the garbage collector policy to the concurrent (low pause time) 
garbage collector (also known as CMS). 

-XX:+CMS 
IncrementalMode 

Enables the incremental mode; works only with  
-XX:+UseConcMarkSweepGC. 

-XX:+CMSIncremental 
Pacing 

Enables automatic adjustment of the incremental mode duty cycle based 
on statistics collected while the JVM is running. 

-XX:+CMSClass 
UnloadingEnabled 

Tells JVM to unload classes which are not needed anymore by the running 
application 

-XX:+UseParNewGC Enables multi-threaded young generation collection. 

-XX:+Disable 
ExplicitGC 

Disables calls to System.gc() that would be enabled by default (-XX:-
DisableExplicitGC). Note that the JVM still performs garbage 
collection when necessary. 

-XX:NewRatio=2 

Ratio of old generation size to young generation size. For example, a 
value of 2 means the maximum size of the old generation will be twice 
the maximum size of the young. In other words, the young generation 
can get up to 1/3 of the heap. 

-XX:SurvivorRate 
=<ratio> 

Ratio of the survivor space relative to the even size, calculated using this 
formula:  survivor ratio= �  young size

survivor size
� -2 

-XX:+Tiered 
Compilation 

Introduced in Java SE 7, this brings client startup speeds to the server VM. 
Normally, a server VM uses the interpreter to collect profiling information 
about methods that are fed into the compiler. In the tiered scheme, in 
addition to the interpreter, the client compiler is used to generate 
compiled versions of methods that collect profiling information about 
themselves. Because the compiled code is substantially faster than the 
interpreter, the program executes with greater performance during the 
profiling phase. In many cases, a startup that is even faster than with the 
client VM can be achieved, because the final code produced by the server 
compiler may already be available during the early stages of application 
initialization. The tiered scheme can also achieve better peak 
performance than a regular server VM, because the faster profiling phase 
allows a longer period of profiling, which may yield better optimization. 

-XX:+UseCompressed 
0ops 

This is on by default, unless -Xms is less than 32GB, in which case it turns 
off if not specified. 

  



Tuning JVM Garbage Collection for Pentaho 

Page 6 

© Hitachi Vantara Corporation 2019. All Rights Reserved 

JVM Tools (Diagnostic, Monitoring, and 
Troubleshooting) 
This section provides information on ways to gather what is going on within the JVM, which can point 
out areas needing attention.  

• Key Points 
• JVM Verbose Logging 
• Oracle Java VisualVM 

Key Points 
Being ready to find and react to problems when they come up requires: 

• Knowing how to get logging turned on when needed, as detail logging should not be turned 
on during regular operation due to the possibility of the creation of a large-size file. 

• Having visual JVM monitoring installed and ready to be used when needed, since using this 
visual tool allows you see threads, memory usage, and stats to quickly point to areas 
needing attention. 

• Viewing and monitoring your environment during good times, so you have benchmarks for 
comparison. 

JVM Verbose Logging 
You can instruct the JVM to log certain details by adding arguments to the Java exec command line. 
For example: 

-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -
Xloggc:{full_path}/{file_name}.log 

Table 2: JVM Verbose Logging 

Verbose Command Description 
-verbose:class Displays classes loaded by JVM, which can be helpful for 

knowing all classes being loaded in a particular scenario. 
-verbose:gc Shows details of garbage collection and of young, old, used, and 

total memory consumption. When combined with  
-XX:+PrintGCTimeStamps -XX:+PrintGCDetails, more 
rich details are added on the lines within the logs. 

-verbose:ini Displays the Java native methods when they are registered in 
the application. 



Tuning JVM Garbage Collection for Pentaho 

Page 7 

© Hitachi Vantara Corporation 2019. All Rights Reserved 

VisualVM 
VisualVM is a free visual tool that can allow you to see detailed information about Java applications 
while they are running on a JVM. VisualVM organizes JVM data that is retrieved by the Java 
Development Kit (JDK) tools and presents the information in a way that allows data on multiple Java 
applications to be quickly viewed—both local applications and applications that are running on 
remote hosts.  

VisualVM features include: 

• Display local and remote Java processes 
• Display process configuration and environment 
• Monitor process performance and memory 
• Visualize process threads 
• Profile performance and memory usage 
• Take and display thread dumps 
• Take and browse heap dumps 
• Analyze core dumps 
• Analyze applications offline 

  

https://visualvm.github.io/


Tuning JVM Garbage Collection for Pentaho 

Page 8 

© Hitachi Vantara Corporation 2019. All Rights Reserved 

Related Information 
Here are some links to information that you may find helpful while using this best practices document: 

• Java Garbage Collection Basics 
• Java HotSpot Virtual Machine Performance Enhancements 
• Oracle Java Virtual Machine Specification 
• Oracle: Tuning JVM Options 
• Pentaho Components Reference 
• VisualVM 

Finalization Checklist 
This checklist is designed to be added to any implemented project that uses this collection of best 
practices, to verify that all items have been considered and reviews have been performed.  

Name of the Project:___________________________________________________________________ 

Date of the Review:____________________________________________________________________ 

Name of the Reviewer:_________________________________________________________________ 

Item Response Comments 

Did you run more than one 
instance of Kitchen, Pan, or 
Carte when working with JVM 
heap space? 

YES________   NO________ 

 

Did you increase the JVM 
PermSize value so that it is 
able to dynamically load many 
class definitions? 

YES________   NO________ 

 

Did you tune the Java 
applications required for the 
JVM? 

YES________   NO________ 
 

Did you refer to each of the 
key points put in place to find 
and react to problems that 
may have come up? 

YES________   NO________ 

 

 

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-1.html
http://docs.oracle.com/cd/E56607_01/doc.301/e56610/sa_gf_perf.htm#CONSA563
https://help.pentaho.com/Documentation/8.2/Setup/Components_Reference
https://visualvm.github.io/

	Overview
	Before You Begin
	Use Case: Memory Slowdown


	Java Descriptions
	What is JVM Garbage Collection?
	JVM Compartments

	Process-Dependent Memory Parameters
	JVM Heap Space (-Xms and -Xmx)
	JVM PermSize (Permanent Generation Memory)
	Sample JVM Settings

	JVM Tools (Diagnostic, Monitoring, and Troubleshooting)
	Key Points
	JVM Verbose Logging
	VisualVM

	Related Information
	Finalization Checklist

