

Configuring Pentaho to Use
Database-Based Security

This page intentionally left blank.

Contents
Overview .. 1

Before You Begin .. 1

Use Case: Applying Pentaho to Existing Database-Based Security ... 1

Authentication and Authorization .. 2

Database Structure .. 3

Table Declarations ... 3

Table Population .. 4

Users Table ... 4

Authorities Table .. 4

Granted_Authorities Table .. 4

Configuring Pentaho to Use JDBC Security ... 5

Step 1: Copy JDBC Driver ... 5

Step 2: Change Pentaho’s Default Security Provider ... 5

Step 3: Connect Pentaho to Your Database ... 5

Step 4: Map the Administrator Role .. 7

Step 5: Map the Administrator User .. 7

Understanding Queries Against Your JDBC Security ... 8

Spring Framework Queries ... 8

Pentaho Queries .. 9

Known Issues .. 12

Database and Table Structure are Different .. 12

Browse File Keeps Spinning with No Results.. 12

Passwords Stored in Cleartext ... 13

Related Information ... 13

Finalization Checklist.. 14

This page intentionally left blank.

Configuring Pentaho to Use Database-Based Security

Page 1

© Hitachi Vantara Corporation 2019. All Rights Reserved

Overview
This document covers some best practices on Java database connectivity (JDBC) authentication. In it,
you will learn how to set up Pentaho to authenticate with a database-based authentication scheme.

Our intended audience is Pentaho administrators, or anyone with a background in authentication and
authorization who is interested in applying JDBC.

The intention of this document is to speak about topics generally; however, these are the specific
versions covered here:

Software Version(s)

Pentaho 7.1, 8.x

The Components Reference in Pentaho Documentation has a complete list of supported software and
hardware.

Before You Begin
This document assumes that you have some background in database administration and network
authentication and that you have already installed Pentaho. More information about related topics
outside of this document can be found at Pentaho Installation and Security Issues.

Use Case: Applying Pentaho to Existing Database-Based Security

Janice administers database-based security on internal applications that use their own authentication.
Because these applications do not use Microsoft Active Directory, the users’ passwords may be different
from their Windows authentication information. To simplify matters, Janice decides to use JDBC security to
plug Pentaho into her existing database-based security. She will then be able to manage user access to
Pentaho by manipulating their own tables and queries.

You could use a hybrid configuration for this as well. Manual LDAP/JDBC Hybrid Configuration in
Pentaho documentation has information on how to do this.

https://help.pentaho.com/Documentation/8.2/Setup/Components_Reference
https://help.pentaho.com/Documentation/8.2/Setup/Installation
https://help.pentaho.com/Documentation/8.2/Setup/Administration/Troubleshooting/Security_Issues
https://help.pentaho.com/Documentation/8.2/Setup/Administration/User_Security/JDBC#Manual_LDAP.2FJDBC_Hybrid_Configuration

Configuring Pentaho to Use Database-Based Security

Page 2

© Hitachi Vantara Corporation 2019. All Rights Reserved

Authentication and Authorization
To configure Pentaho to use a database-based authentication scheme, you must first know how
Pentaho uses authentication and authorization, and how Spring Framework fits in.

Authentication occurs when the user logs in with their credentials and the system checks to make sure
the user is valid and active. Once the user is validated, the system checks to see what roles the user
has, which will define what the user is authorized to do on the server. Roles are assigned only once
authentication has occurred, and they handle operational permissions.

Figure 1: Authentication

Seeing the contents of a report is controlled by Mondrian roles in Analyzer reports and platform
roles in Metadata models used in Interactive Reports and Pentaho Report Designer Reports, and
should not be confused with authorization, which allows a user to open a report. Seeing the
contents of a report is security-constrained access and beyond the scope of this document.

https://projects.spring.io/spring-security/

Configuring Pentaho to Use Database-Based Security

Page 3

© Hitachi Vantara Corporation 2019. All Rights Reserved

Database Structure
To work with Pentaho and Spring Framework, you can use any database structure as long as it has, at
a minimum, the equivalent of the following three tables. You can find information for setting up User
Security in the Pentaho documentation.

1. Users: containing user information
2. Authorities: containing role information
3. Granted_Authorities: combining users and roles granted each user. In practice, there

should be a one-to-one relationship between user and role in the table, so if a user has four
roles, there should be four entries for the user, one for each role.

You can find more information on these topics in the following sections:

• Table Declarations
• Table Population

Table Declarations
These table declarations are minimal settings for JDBC security:

1. Create table users:

CREATE TABLE USERS (
USERNAME VARCHAR2(50) NOT NULL PRIMARY KEY,
PASSWORD VARCHAR2(50) NOT NULL,
ENABLED INTEGER DEFAULT 1 NOT NULL,
DESCRIPTION VARCHAR2(100);

2. Create table authorities:

CREATE TABLE AUTHORITIES(
AUTHORITY VARCHAR(50) NOT NULL PRIMARY KEY,
DESCRIPTION VARCHAR(100));

3. Create table granted_authorities:

CREATE TABLE GRANTED_AUTHORITIES(
USERNAME VARCHAR(50) NOT NULL,
AUTHORITY VARCHAR(50) NOT NULL,
CONSTRAINT FK_GRANTED_AUTHORITIES_USERS FOREIGN KEY(USERNAME) REFERENCES
USERS(USERNAME),
CONSTRAINT FK_GRANTED_AUTHORITIES_AUTHORITIES FOREIGN KEY(AUTHORITY)
REFERENCES AUTHORITIES(AUTHORITY))

https://help.pentaho.com/Documentation/8.2/Setup/Administration/User_Security/JDBC
https://help.pentaho.com/Documentation/8.2/Setup/Administration/User_Security/JDBC

Configuring Pentaho to Use Database-Based Security

Page 4

© Hitachi Vantara Corporation 2019. All Rights Reserved

Table Population
Populate your tables like this:

Users Table

By default, we use the PlaintextPasswordEncoder, which reads the password as it is in the database.
You can use a different password encoder if you want. Here is example code to illustrate the users
table with plaintext passwords:

INSERT INTO USERS VALUES('gabellard','Password1',1,NULL);
INSERT INTO USERS VALUES('wfaulkner','Password1',1,NULL);
INSERT INTO USERS VALUES('clopez','Password1',1,NULL);
INSERT INTO USERS VALUES('skemparaju','mypassword',1,NULL);

Authorities Table

Example code to illustrate the authorities table:

INSERT INTO AUTHORITIES VALUES('DBPentAdmins','Super User');
INSERT INTO AUTHORITIES VALUES('DBPentHR','HR Users');
INSERT INTO AUTHORITIES VALUES('DBPentFinance','Finance Users');
INSERT INTO AUTHORITIES VALUES('DBPentUsers','User has not logged in');
INSERT INTO AUTHORITIES VALUES('DBPentSales','Sales Users');

Granted_Authorities Table

Example code to illustrate the granted_authorities table with a one-to-one relationship between
users and roles:

INSERT INTO GRANTED_AUTHORITIES VALUES('gabellard','DBPentAdmins');
INSERT INTO GRANTED_AUTHORITIES VALUES('gabellard','DBPentUsers');
INSERT INTO GRANTED_AUTHORITIES VALUES('clopez','DBPentUsers');
INSERT INTO GRANTED_AUTHORITIES VALUES('clopez','DBPentFinance');
INSERT INTO GRANTED_AUTHORITIES VALUES('wfaulkner','DBPentUsers');
INSERT INTO GRANTED_AUTHORITIES VALUES('wfaulkner','DBPentHR');
INSERT INTO GRANTED_AUTHORITIES VALUES('skemparaju','DBPentSales');
INSERT INTO GRANTED_AUTHORITIES VALUES('skemparaju','DBPentUsers');

Configuring Pentaho to Use Database-Based Security

Page 5

© Hitachi Vantara Corporation 2019. All Rights Reserved

Configuring Pentaho to Use JDBC Security
The following steps assume that Pentaho has already been installed. Make sure you follow these steps
after you have stopped the Pentaho Server.

• Step 1: Copy JDBC Driver
• Step 2: Change Pentaho’s Default Security Provider
• Step 3: Connect Pentaho to Your Database
• Step 4: Map the Administrator Role
• Step 5: Map the Administrator User

Step 1: Copy JDBC Driver
Filling in your own installation path, copy the JDBC driver to:

<installation path>/pentaho-server/tomcat/lib/

Step 2: Change Pentaho’s Default Security Provider
Pentaho’s default security provider is Jackrabbit. To change this to JDBC, follow these steps:

1. Locate the file <installation path>/pentaho-server/pentaho-
solutions/system/security.properties.

2. Change the provider from provider=jackrabbit to provider=jdbc.
3. Save the file.

Step 3: Connect Pentaho to Your Database
Since you have already copied the JDBC driver to tomcat/lib, you can now connect Pentaho to your
database with these steps:

1. Locate the file <installation path>/pentaho-server/pentaho-
solutions/system/applicationContext-spring-security-jdbc.properties.

2. Add the correct database information. This example uses PostgreSQL.

https://help.pentaho.com/Documentation/8.2/Setup/Configuration/Pentaho_Server/Start_and_Stop

Configuring Pentaho to Use Database-Based Security

Page 6

© Hitachi Vantara Corporation 2019. All Rights Reserved

The fully qualified Java class name of the JDBC driver to be used
datasource.driver.classname=org.postgresql.Driver

The connection URL to be passed to our JDBC driver to establish a
connection
datasource.url=jdbc:postgresql://localhost:5432/jdbc_auth

The connection username to be passed to our JDBC driver to establish a
connection
datasource.username=postgres

The connection password to be passed to our JDBC driver to establish a
connection
datasource.password=password

The SQL query that will be used to validate connections from this pool
before returning them to the caller.
This query must be an SELECT statement that returns at least one row.
HSQLDB: SELECT 1 FROM INFORMATION_SCHEMA.SYSTEM_USERS
MySQL, H2, MS-SQL, POSTGRESQL, SQLite: SELECT 1
ORACLE: SELECT 1 FROM DUAL
datasource.validation.query=SELECT 1

the maximum number of milliseconds that the pool will wait (when there
are no available connections)
for a connection to be returned before throwing an exception, or <= 0 to
wait indefinitely. Default value is -1
datasource.pool.max.wait=-1

The maximum number of active connections that can be allocated from this
pool at the same time, or negative for no limit. Default value is 8
datasource.pool.max.active=8

The maximum number of connections that can remain idle in the pool,
without extra ones being destroyed, or negative for no limit. Default value
is 8
datasource.max.idle=4

The minimum number of active connections that can remain idle in the
pool, without extra ones being created when the evictor runs, or 0 to
create none. Default value is 0
datasource.min.idle=0

Configuring Pentaho to Use Database-Based Security

Page 7

© Hitachi Vantara Corporation 2019. All Rights Reserved

Step 4: Map the Administrator Role
Next, map the Administrator role correctly using these steps:

1. Locate the file <installation path>/pentaho-server/pentaho-
solutions/system/applicationContext-pentaho-security.jdbc.xml.

2. Change the <entry key> to the admin role value from the database from

<util:map id="jdbcRoleMap">
<entry key="Admin" value="Administrator"/>
</util:map>

to

<util:map id="jdbcRoleMap">
<entry key="DBPentAdmins" value="Administrator"/>
</util:map>

3. Save the file.

Step 5: Map the Administrator User
Once you have the Administrator role mapped, map the Administrator user:

1. Locate the directory /pentaho-server/pentaho-solutions/system.
2. Open the repository.spring.properties file.
3. Locate the following line:

singleTenantAdminUserName=admin

4. Change it to map an administrator user in your database authentication:

singleTenantAdminUserName=DBAdminUser

5. Save and close the file.

Configuring Pentaho to Use Database-Based Security

Page 8

© Hitachi Vantara Corporation 2019. All Rights Reserved

Understanding Queries Against Your JDBC
Security
Now that Pentaho Server has been configured to use your JDBC security, you can find further
information about the queries against your database in this section.

This section is provided for information, should you want to explore these areas further. Actions
in this section are not a required part of the configuration.

• Spring Framework Queries
• Pentaho Queries

Spring Framework Queries
As a user logs in, two queries are fired: one to get information about the user, and one to find out
what roles the user belongs to. You can find this in the log with these steps:

1. Locate the file <installation path>/pentaho-
server/tomcat/webapps/pentaho/WEB-INF/classes/log4j.xml.

2. Add the following categories:

<category name="org.springframework.security">
 <priority value="DEBUG"/>
</category>

3. In the pentaho.log, you will see:

DEBUG
[org.springframework.security.web.authentication.AnonymousAuthenticationFil
ter] SecurityContextHolder not populated with anonymous token, as it
already contained:
'org.springframework.security.authentication.UsernamePasswordAuthentication
Token@f81a4943: Principal:
org.springframework.security.core.userdetails.User@fc211e2b: Username:
skemparaju; Password: [PROTECTED]; Enabled: true; AccountNonExpired: true;
credentialsNonExpired: true; AccountNonLocked: true; Granted Authorities:
Authenticated,DBPentSales,DBPentUsers; Credentials: [PROTECTED];
Authenticated: true; Details:
org.springframework.security.web.authentication.WebAuthenticationDetails@25
5f8: RemoteIpAddress: 127.0.0.1; SessionId:
4713A775E8A737E8ED4A3E2E768B5653; Granted Authorities: Authenticated,
DBPentSales, DBPentUsers'

The queries that result in this information are found in <installation path>/pentaho-
server/pentaho-solutions/system/applicationContext-spring-security-

jdbc.xml.

Configuring Pentaho to Use Database-Based Security

Page 9

© Hitachi Vantara Corporation 2019. All Rights Reserved

4. The usersByUsernameQuery loads the username and password:

SELECT username, password, enabled FROM USERS WHERE username = ? ORDER BY
username

5. The authoritiesByUsernameQuery loads the roles the user belongs to:

SELECT username, authority FROM GRANTED_AUTHORITIES WHERE username = ?
ORDER BY authority

Pentaho Queries
When you start Pentaho, it will connect to the database to gather information about the user and
authorities for Pentaho authorization. The Administrator role and user are used to retrieve this
information.

To see this information in the pentaho.log, follow these steps:

1. Locate the file <installation path>/pentaho-
server/tomcat/webapps/pentaho/WEB-INF/classes/log4j.xml.

2. Add the following categories:

<category name="org.pentaho.platform.engine.security">
 <priority value="DEBUG"/>
</category>

3. In the pentaho.log, you will see:

DEBUG
[org.pentaho.platform.plugin.services.security.userrole.jdbc.JdbcUserRoleLi
stService$AllAuthoritiesMapping] RdbmsOperation with SQL [SELECT
distinct(authority) as authority FROM AUTHORITIES ORDER BY authority]
compiled

DEBUG
[org.pentaho.platform.plugin.services.security.userrole.jdbc.JdbcUserRoleLi
stService$AllUserNamesInRoleMapping] RdbmsOperation with SQL [SELECT
distinct(username) as username FROM GRANTED_AUTHORITIES where authority = ?
ORDER BY username] compiled

DEBUG
[org.pentaho.platform.plugin.services.security.userrole.jdbc.JdbcUserRoleLi
stService$AllUserNamesMapping] RdbmsOperation with SQL [SELECT
distinct(username) as username FROM USERS ORDER BY username] compiled

Note that these are the same queries shown in <installation path>/pentaho-
server/pentaho-solutions/system/applicationContext-pentaho-security-

jdbc.xml.

4. The allAuthoritiesQuery, used to show all the roles on the Authorities table, is written
as:

SELECT distinct(authority) as authority FROM AUTHORITIES ORDER BY authority

Configuring Pentaho to Use Database-Based Security

Page 10

© Hitachi Vantara Corporation 2019. All Rights Reserved

5. These roles are later displayed under Users & Roles on the Administration Perspective in
the Pentaho User Console (PUC):

Figure 2: Users & Roles in the PUC

6. The allUsernamesInRoleQuery, which gets all users who belong to a specific role, is
written as:

SELECT distinct(username) as username FROM GRANTED_AUTHORITIES where
authority = ? ORDER BY username

7. The allUsernamesQuery, which shows the users on the Share or Permissions tab, is
written as:

SELECT distinct(username) as username FROM USERS ORDER BY username

Configuring Pentaho to Use Database-Based Security

Page 11

© Hitachi Vantara Corporation 2019. All Rights Reserved

Figure 3: Select User or Role

8. Check the pentaho.log for the Administrator role and user:

DEBUG
[org.springframework.security.core.userdetails.cache.EhCacheBasedUserCache]
Cache hit: true; username: gabellard
DEBUG [org.pentaho.platform.engine.security.SecurityHelper]
rolesForUser:[Authenticated, Administrator, DBPentUsers, Anonymous]

These must be active in your database, or you will not be able to connect to your database to
extract the roles and users necessary for the Pentaho Server to function properly.

Configuring Pentaho to Use Database-Based Security

Page 12

© Hitachi Vantara Corporation 2019. All Rights Reserved

Known Issues
In this section are a few known issues to be aware of, as well as solutions for each.

Database and Table Structure are Different
If you are already using a different table structure for your JDBC authentication, make sure you use
an alias for the different field names, as illustrated in this example:

SELECT userid as username, 'password' as password, 'enabled' as enabled
FROM USERS_ROLES WHERE userid= ? ORDER BY userid

Browse File Keeps Spinning with No Results
After configuring JDBC security, you may run into an issue where your browse file constantly spins but
does not show anything. The Catalina log shows an example:

SEVERE: The RuntimeException could not be mapped to a response, re-throwing
to the HTTP container

org.pentaho.platform.api.repository2.unified.UnifiedRepositoryException:
exception while getting tree rooted at path "/"

Reference number: 2f863f91-f38f-4176-91a2-a0fb43a73af2

at
org.pentaho.platform.repository2.unified.ExceptionLoggingDecorator.callLogT
hrow(ExceptionLoggingDecorator.java:512)

The pentaho.log will show comparable results. This can happen for any of the following reasons:

• One of the queries in either configuration file is returning a null value.
• Passwords, roles, or granted roles are null.
• Users are not properly disabled.
• A role is not properly mapped to a user in the granted_authorities table.

To fix this, follow these steps:

1. Locate the file <installation path>/pentaho-
server/tomcat/webapps/pentaho/WEB-INF/classes/log4j.xml.

2. Add the following category to the file:

<category
name="org.pentaho.platform.repository2.unified.ExceptionLoggingDecorator">
<priority value="DEBUG"/>
</category>

3. Restart the Pentaho Server.
4. Log back in again and choose Browse Files.

Configuring Pentaho to Use Database-Based Security

Page 13

© Hitachi Vantara Corporation 2019. All Rights Reserved

Passwords Stored in Cleartext
By default, Pentaho connects to your database using a cleartext password stored in the file
<installation-path>/pentaho-server/pentaho-

solutions/system/applicationContext-spring-security-jdbc.properties.

A workaround to this is to use an account or database login that is only for this database. You will
need READ ONLY permissions for this. Do not use something like a system administrator account or
similar.

Related Information
Here are some links to information that you may find helpful while using this best practices document:

• Manual LDAP/JDBC Hybrid Configuration
• Pentaho Installation
• Pentaho Components Reference
• Security Issues
• User Security
• Spring Framework
• Starting and Stopping the Pentaho Server

https://help.pentaho.com/Documentation/8.2/Setup/Administration/User_Security/JDBC#Manual_LDAP.2FJDBC_Hybrid_Configuration
https://help.pentaho.com/Documentation/8.2/Setup/Installation
https://help.pentaho.com/Documentation/8.2/Setup/Components_Reference
https://help.pentaho.com/Documentation/8.2/Setup/Administration/Troubleshooting/Security_Issues
https://help.pentaho.com/Documentation/8.2/Setup/Administration/User_Security/JDBC
https://projects.spring.io/spring-security/
https://help.pentaho.com/Documentation/8.2/Setup/Configuration/Pentaho_Server/Start_and_Stop

Configuring Pentaho to Use Database-Based Security

Page 14

© Hitachi Vantara Corporation 2019. All Rights Reserved

Finalization Checklist
This checklist is designed to be added to any implemented project that uses this collection of best
practices, to verify that all items have been considered and reviews have been performed. (Compose
specific questions about the topics in the document and put them in the table.)

Name of the Project: ___

Date of the Review: __

Name of the Reviewer: ___

Item Response Comments

Did you install Pentaho before
beginning?

YES________ NO________

Did you familiarize yourself
with how Pentaho uses
authentication and
authorization?

YES________ NO________

Are you familiar with Spring
Framework?

YES________ NO________

Did you follow the table
declaration settings for JDBC
security?

YES________ NO________

Did you stop the Pentaho
server before starting your
configuration?

YES________ NO________

Did you use aliases for the
different field names, if you
have a different table structure
for your JDBC authentication?

YES________ NO________

	Overview
	Before You Begin
	Use Case: Applying Pentaho to Existing Database-Based Security

	Authentication and Authorization
	Database Structure
	Table Declarations
	Table Population
	Users Table
	Authorities Table
	Granted_Authorities Table

	Configuring Pentaho to Use JDBC Security
	Step 1: Copy JDBC Driver
	Step 2: Change Pentaho’s Default Security Provider
	Step 3: Connect Pentaho to Your Database
	Step 4: Map the Administrator Role
	Step 5: Map the Administrator User

	Understanding Queries Against Your JDBC Security
	Spring Framework Queries
	Pentaho Queries

	Known Issues
	Database and Table Structure are Different
	Browse File Keeps Spinning with No Results
	Passwords Stored in Cleartext

	Related Information
	Finalization Checklist

