

Best Practices for Pentaho’s
AEL Spark Engine

Change log (if you want to use it):

Date Version Author Changes

Contents
Overview .. 1

Before You Begin .. 1

Use Case: Performing a Word Count with AEL Spark .. 1

Best Practices with AEL Spark ... 2

Parallelism with AEL Spark .. 2

Steps Using Original PDI Implementations .. 2

Steps Using Native Spark Implementations ... 3

Using AEL Spark .. 4

Related Information ... 7

Finalization Checklist.. 8

This page intentionally left blank.

Best Practices for Pentaho’s AEL Spark Engine

Page 1

© Hitachi Vantara Corporation 2018. All Rights Reserved

Overview
This document covers some best practices on the AEL Spark engine. You will learn about the Adaptive
Execution Layer (AEL), which provides an abstraction layer of the engine that runs Pentaho Data
Integration (PDI) transformations.

The AEL feature, which is packaged with Pentaho, allows transformations to run on new and emerging
technologies that support distributed job processing, in addition to the traditional Kettle engine. The
Apache Spark AEL implementation is the first of these technologies. Apache Spark is designed to
process massive amounts of data by distributing work across clusters.

Our intended audience is PDI developers, with some basic knowledge of Spark, YARN and HDFS.

The intention of this document is to speak about topics generally; however, these are the specific
versions covered here:

Software Version(s)

Pentaho 8.1

Hadoop Distribution CDH 5.13, HDP 2.6, EMR 5.9, MapR 5.2

The Components Reference in Pentaho Documentation has a complete list of supported software and
hardware.

Before You Begin
This document assumes that you have knowledge of Pentaho and that you have already installed
Pentaho, a supported Hadoop distribution, and Spark, or are just interested in learning more about
AEL Spark. More information about related topics outside of this document can be found in the AEL
setup documentation.

Use Case: Performing a Word Count with AEL Spark

Janice needs to find out how many times the word “leverage” is used in a long whitepaper. She has
decided to use a Word Count. With a simple transformation, AEL Spark can perform this
summary on data within a Hadoop cluster, and scale out as the number of input files increases.

Figure 1: A Word Count Implemented for Use with AEL Spark

https://help.pentaho.com/Documentation/8.1/Setup/Components_Reference

Best Practices for Pentaho’s AEL Spark Engine

Page 2

© Hitachi Vantara Corporation 2018. All Rights Reserved

Best Practices with AEL Spark
The AEL Spark engine allows PDI transformations to be executed on the Apache Spark distributed
processing system. Traditionally, each step was assigned a thread and executed in a single JVM, but
with AEL Spark, the transformation’s steps are distributed to Spark executors where they operate on
partitions of data.

You can find details on these topics in the following sections:

• Parallelism with AEL Spark
• Using AEL Spark

Parallelism with AEL Spark
To take full advantage of an underlying execution engine, the AEL allows PDI transformation steps to
have more than one implementation. With the Pentaho engine, there was a single way for steps to be
executed, through the implementation of the processRow method in the PDI API.

With AEL Spark, some steps have Spark-specific implementations that use native Spark capabilities.
The capabilities are designed to be highly distributed, yet produce the same result sets.

Steps Using Original PDI Implementations
Most PDI steps can work on rows from a stream in parallel. With the Pentaho local run configuration,
parallelism is controlled by right-clicking a step and changing the number of copies/threads dedicated
to it. However, the number of copies setting is not used by AEL Spark, as parallelism is dictated by
Spark partitioning.

Steps that perform operations on single rows from a stream are great candidates for running in
parallel within AEL Spark. Some example steps that behave like this are Calculator, Select Values,
Split Fields, and Add a checksum. When executed in AEL Spark, the input data sets are split into
partitions that are distributed across Spark executors. The original Pentaho engine processRow
method is distributed to the executors, where it is invoked on the partitions of data in Spark Tasks.

Steps That Are Not Distributed

Some PDI steps require multiple input rows of data before they can produce output rows, or they may
not naturally lend themselves to concurrent execution. If these steps have not been overridden by a
native Spark implementation, the AEL Spark engine automatically adds a coalesce operation to
process all input data by a single thread on a single Spark executor using the processRow method.
While this may reduce performance, it ensures correct results are produced by the transformation.

You can find the list of steps that have the coalesce operation added under an installed AEL daemon
in the data-integration/system/karaf/etc/org.pentaho.pdi.engine.spark.cfg file, in
the forceCoalesceSteps property. Some of the steps on this list include Row denormaliser, Add
sequence, and other steps that a user would not change the number of threads in when using the
classic PDI engine.

Best Practices for Pentaho’s AEL Spark Engine

Page 3

© Hitachi Vantara Corporation 2018. All Rights Reserved

Steps Using Native Spark Implementations
Spark is designed to process big data that is distributed on a cluster. Unlike MapReduce, which was
limited to at-most one reduce operation, Spark can have as many reduces (data shuffling operations)
as are required to process a directed acyclic graph (DAG). Some of the PDI steps have implementations
that override the Pentaho engine’s processRow method to use Spark’s native distributed processing
capabilities. As of 8.1, the list of steps with native Spark implementations is as follows:

Figure 2: PDI Steps with Native Spark Implementation

Best Practices for Pentaho’s AEL Spark Engine

Page 4

© Hitachi Vantara Corporation 2018. All Rights Reserved

Using AEL Spark
In the following section, you will find a collection of our recommendations for using AEL Spark,
including how to use certain PDI steps to keep your jobs and transformations running efficiently.
Pentaho’s 8.1 release introduced several new features, including the ability to reuse Spark sessions,
which is a great tool for AEL Spark ETL development.

Figure 3: Best Practices for AEL Spark and Pentaho

When you are performing simple joins with small info streams, use Stream lookup
to allow data from an info stream to augment rows from a main stream. In cases
where a cartesian product is not required (the info stream only has single entries
for the key lookup fields), Stream lookups can be used to implement left (main
left join info) or inner joins (inner joins require an additional filtering step).

We recommend using Stream lookups only when the info stream is considerably
smaller than the main input stream. With the AEL Spark engine, the Stream lookup step is overridden
with a Spark implementation that utilizes Spark’s broadcast variable feature. The data from the lookup
step (or info stream) is prepared and distributed to all Spark executors. When the step executes, a

Stream
lookup for

Simple Joins

Best Practices for Pentaho’s AEL Spark Engine

Page 5

© Hitachi Vantara Corporation 2018. All Rights Reserved

mapping function retrieves and augments the main input row stream with field data from the
broadcasted info stream to produce output rows.

If the data to be used for the lookup step/info stream can fit in the memory of every Spark executor,
a Stream lookup should perform significantly better than a Merge Join. The Merge Join
implementation will shuffle and move virtually all row data across the network of executor nodes,
while the Stream lookup can perform the joins without moving the rows of the larger input stream
around the network.

In MapReduce terminology, the Stream lookup executes an N-1 map-side join, where a smaller input
is temporarily placed in the distributed cache. The Merge Join behaves more like a reduce-side join.

The PDI engine requires that input rows be sorted by key fields for the Group by,
Unique rows, and Merge Join steps. However, all three of these steps have
overridden Spark implementations with AEL Spark, which do not require the input
rows to be sorted.

If the transformation being created is exclusively for execution using AEL Spark,
omitting extra Sort rows steps will improve performance on AEL Spark, since Sort

rows requires a shuffle, or network transfer of the row data around the cluster of Spark executors.

If a transformation is required for both AEL Spark and the PDI engine, try to use the Memory Group
by or Unique rows (Hashset) steps instead. These steps do not require sorted inputs for the PDI
engine, but take advantage of an overridden Spark implementation with AEL Spark.

Pentaho 8.1’s AEL implementation introduced the ability to configure the Spark
History server, which logs job and performance metrics as Spark is processing.

Configure the History server (disabled by default, located in the
application.properties file within data-integration/adaptive-

execution/config/) by setting the sparkEventLogEnabled property to true,
and finding the correct value for the sparkEventLogDir property by visiting the

Spark History server’s home page.

sparkEventLogEnabled=true

sparkEventLogDir=hdfs://quickstart.cloudera:8020/user/spark/spark2Applicati
onHistory

Reusing Spark sessions during development lets you keep your Spark cluster of
executors active instead of being shut down after the transformation completes.
Any following transformation requests will be sent to the still-active Spark session,
drastically reducing the wait time. However, this feature is only intended for
development, and should not be used for production AEL Spark workloads. To

Avoid Sorts
Before Group

by, Unique
rows, and
Merge Join

Spark History
Server

Reuse Spark
Sessions
During

Development

Best Practices for Pentaho’s AEL Spark Engine

Page 6

© Hitachi Vantara Corporation 2018. All Rights Reserved

enable the feature, simply add the following property to the kettle.properties file on the
development client:

KETTLE_AEL_PDI_DAEMON_CONTEXT_REUSE=true

Custom properties that allow tuning or configuration of Spark are traditionally
specified in spark.conf or as additional arguments in a spark-submit or
spark-shell command. AEL Spark also has a way to specify per-transformation
or per-daemon properties.

Any property that is prefixed with spark. will be passed to the Spark execution
environment.

• The first method to specify a custom Spark property is to add it to the data-
integration/adaptive-execution/config/application.properties file. This
property will be applied to all transformations executed by the corresponding AEL Spark
daemon.

• The second option is to specify a spark. property as a transformation variable or parameter
at execution time. Transformation parameters have the highest precedence, followed by
transformation variables, and finally followed by values specified in the
application.properties file.

Please note that there are some properties that cannot be overridden. More information on this can
be found at Specify Additional Spark Properties.

Control the partitioning for your input steps through cluster ingest data treatment.

Spark processes partitions of data defined by file input splits. With Hadoop, every
individual file is split by some block size defined when the file is written to HDFS.

When you are preparing the data files to be used as input to an AEL Spark
transformation, tune parallelism by staging input files at a size that yields the

desired number of partitions to process.

Use caution when you are working with steps that call upon external resources.

Keep in mind that Spark is a distributed processing technology, and a
transformation could execute tasks on data partitions with many threads, within
many processes, on many worker nodes.

Steps like REST Client or Database lookup in a transformation executing in
parallel could overwhelm the server being called. Simply put, keep this in mind during transformation
design, so you do not self-inflict a denial of service attack.

Tune with
Parameters

and Variables

Cluster Ingest
Data

Treatment

Caution Using
External

Resources

https://help.pentaho.com/Documentation/8.1/Setup/Configuration/Adaptive_Execution_Layer/Spark_Properties

Best Practices for Pentaho’s AEL Spark Engine

Page 7

© Hitachi Vantara Corporation 2018. All Rights Reserved

The forceCoalesceSteps list was described in the Steps That Are Not
Distributed section of this document. Any steps on this list that do not have an
overridden Spark implementation will be executed by a single thread on a single
Spark executor. This is required so the transformation behaves correctly at the
cost of performance.

If possible, try to reserve steps on this list for smaller streams, such as those that
have been summarized by a Group by, or towards the end of the transformation.

Related Information
Here are some links to information that you may find helpful while using this best practices document:

• Components Reference
• Set Up the Adaptive Execution Layer (AEL)
• Specify Additional Spark Properties

Caution Using
Coalesced

Steps

https://help.pentaho.com/Documentation/8.1/Setup/Components_Reference
https://help.pentaho.com/Documentation/8.1/Setup/Configuration/Adaptive_Execution_Layer
https://help.pentaho.com/Documentation/8.1/Setup/Configuration/Adaptive_Execution_Layer/Spark_Properties

Best Practices for Pentaho’s AEL Spark Engine

Page 8

© Hitachi Vantara Corporation 2018. All Rights Reserved

Finalization Checklist
This checklist is designed to be added to any implemented project that uses this collection of best
practices, to verify that all items have been considered and reviews have been performed.

Name of the Project:___

Date of the Review:__

Name of the Reviewer:___

Item Response Comments

Did you use Stream lookup
for simple joins?

YES________ NO________

Did you remember not to use
sorts before Group by,
Unique Rows, and Merge
Join?

YES________ NO________

Did you set up the Spark
History server?

YES________ NO________

Did you reuse Spark sessions
during development?

YES________ NO________

Did you tune using parameters
and variables?

YES________ NO________

Did you control the
partitioning for your input
steps through cluster ingest
data treatment?

YES________ NO________

Did you use caution when
calling on external resources?

YES________ NO________

Did you use caution regarding
coalesced steps?

YES________ NO________

	Overview
	Before You Begin
	Use Case: Performing a Word Count with AEL Spark

	Best Practices with AEL Spark
	Parallelism with AEL Spark
	Steps Using Original PDI Implementations
	Steps That Are Not Distributed

	Steps Using Native Spark Implementations

	Using AEL Spark

	Related Information
	Finalization Checklist

