
Best Practices -
PDI Performance Tuning

This page intentionally left blank.

Contents
Overview .. 1

Performance Tuning Process .. 1

Identifying, Eliminating, and Verifying Bottlenecks ... 2

Identifying Bottlenecks with Step Metrics .. 2

Eliminating Bottlenecks ... 3

Verifying Bottlenecks ... 4

External Performance Factors .. 5

Network Performance ... 5

Data Source and Target Performance ... 6

Storage Performance ... 7

PDI Performance Tuning ... 9

PDI Transformation Design .. 9

Query Management ... 9

Database Management ... 10

Real-time Data on Demand .. 10

Scripting... 11

PDI Job Design .. 12

Looping .. 12

Scaling Up Transformations ... 13

CPU and Multithreading .. 13

Memory Utilization .. 13

PDI Clusters ... 14

Clustered Transformations ... 15

Partitioning ... 16

PDI Visual MapReduce for Hadoop ... 18

Related Information ... 20

This page intentionally left blank.

Best Practice PDI Performance Tuning
Pentaho 1

Overview

This guide provides an overview of factors that can affect the performance of Pentaho Data
Integration (PDI) jobs and transformations, and provides a methodical approach to identifying and
addressing bottlenecks.

Some of the things discussed here include identifying, eliminating, and verifying bottlenecks,
external performance factors, and PDI performance tuning.

The intention of this document is to speak about topics generally; however, these are the specific
versions covered here:

Software Version
Pentaho 5.4, 6.x, 7.x

Performance Tuning Process

PDI transformations are Extract, Transform, and Load (ETL) workflows that consist of steps linked
together as shown below:

Figure 1: ETL Workflow

There are three basic types of steps:

• Input step – Ingests data into PDI (e.g. Table input step).
• Transformation step – Processes data within PDI (e.g. Data Validator, Filter rows, and

Java Script steps).
• Output step – Outputs transformed data from PDI (e.g. Table output step).

All steps are processed in parallel, and the overall speed of the transformation is capped at the
speed of the slowest step. Therefore, the following process is used to improve transformation
performance:

1. Identify the slowest step (the bottleneck).
2. Improve performance of the slowest step until it is no longer the bottleneck.
3. Repeat steps 1 and 2 for the new bottleneck. Iterate until the Service Level Agreement (SLA) is

met.

Best Practice PDI Performance Tuning
Pentaho 2

Identifying, Eliminating, and Verifying Bottlenecks

Several PDI features provide techniques for working with bottlenecks, including:

• Identifying Bottlenecks with Step Metrics
• Eliminating Bottlenecks
• Verifying Bottlenecks

Identifying Bottlenecks with Step Metrics

Row buffers are created between each step. This allows the steps to retrieve rows of data from their
inbound row buffer. The rows are then processed and passed to an outbound row buffer that feeds
into the subsequent step. Row buffers can hold up to 10,000 rows, but this can be configured for
each transformation.

The Step Metrics tab on the Execution Results pane will show real-time statistics for each step
when you run a transformation. The Input/Output field shows a real-time display of the number of
rows in the buffers feeding into and coming out of each step. You know that the step cannot keep
up with the rows being fed into it if the input of a step is full. Below are some examples.

Example of Table Input Bottleneck
The following example shows a snapshot in real-time of a running transformation:

Table 1: Table Input Bottleneck

Step Name Input/Output
Table Input 0/50

Data Validator 48/52

Filter Rows 54/42

JavaScript Step 37/51

Table Output 43/0

The transformation has no trouble keeping up with incoming rows because the buffers are low
(much less than 10,000). This allows them to be processed and delivered to the target. Therefore,
the Table Input step is the bottleneck.

Best Practice PDI Performance Tuning
Pentaho 3

Example of Table Output Bottleneck
The following example shows that the buffers are full (close to the buffer size of 10,000):

Table 2: Table Output Bottleneck
Step Name Input/Output

Table Input 0/9720

Data Validator 9850/9741

Filter Rows 9922/9413

JavaScript Step 9212/9413

Table Output 9985/0

PDI is waiting for the Table Output step to consume rows. This means that the data target is the
bottleneck.

Example of Transformation Bottleneck
The following example shows that the row buffers are filled all the way through to the JavaScript
step:

Table 3: Transformation Bottleneck

Step Name Input/Output
Table Input 0/9815

Data Validator 9784/9962

Filter Rows 9834/9724

JavaScript Step 9834/27

Table Output 53/0

The Table Output buffers are low, which shows that the data target has no trouble consuming
output from PDI. This indicates that the JavaScript step is the bottleneck.

Eliminating Bottlenecks

Consider the following things to detect and eliminate bottlenecks:

Table 4: Eliminating Bottlenecks

Solution Explanation

Performance Monitoring

Real-time Performance Monitoring captures throughput
in rows-per-second for each step, for several metrics.
Performance monitoring values can be stored in a
centralized logging database to enable analyzing jobs that
are run on remote PDI servers. Performance monitoring
requires additional resources and can be enabled or
disabled on individual jobs and transformations.

Repeat Measurements

Data caching can significantly affect performance for
subsequent runs. For example, a database may cache
query results so that, the next time the query is run, it will
return results much faster. Make sure to measure the
same scenario several times to account for caching.

https://support.pentaho.com/hc/en-us/articles/115001733243-Best-Practices-PDI-Logging-Monitorin

Best Practice PDI Performance Tuning
Pentaho 4

Follow the guidelines in the External Performance Factors section below if the Input or Output step
is the bottleneck. This will help you address areas such as networking, database, or storage
optimization that can affect how quickly data can be imported or exported from PDI. Otherwise, the
PDI Performance Tuning section gives suggestions for improving performance within PDI.

We recommend selecting the Metrics tab on the Execution Results pane to view the length of time
in milliseconds for initialization and execution of each transformation step. This can assist with
identifying bottlenecks.

Verifying Bottlenecks

You can verify that the bottleneck is an Output step by replacing it with a Dummy step, which
throws away the rows. It is likely that the Output step is the bottleneck if the overall speed of the
transformation increases.

You can replace an Input step with a Generate Rows step, Data Grid step, or a Text file input step
that is pointing to a file on a fast, local storage or a Random-Access Memory (RAM) drive. You can
then check if the transformation is faster.

Follow guidelines in the PDI Performance Tuning section if the bottleneck step is a transformation
step. This will help you improve PDI performance.

Best Practice PDI Performance Tuning
Pentaho 5

External Performance Factors

External factors, such as network or database performance, are likely the problem if the bottleneck
is an Input or Output step. PDI is part of a larger system that includes data sources, data targets,
networking, storage, and other infrastructure components. This section discusses these areas but
does not provide detailed tuning instructions, such as how to tune your Oracle database.

Network Performance

Many times, the network is the bottleneck and throughput is capped by the network layer.

First, eliminate the network as the bottleneck by following these steps:

1. Export the source data to a local text file and measure how long it takes for the database
to export the data, without touching the network.

2. Copy the text file to the PDI server and measure the time for the transfer.
3. Modify the transformation to import the local file.
4. Run the transformation again and measure the time to import the local file, without

touching the network.
5. Compare these measurements to assess network performance.

Consider the following things to assess for possible network bottlenecks:

Table 5: Bottleneck Solutions
Solution Explanation

Network Sizing

Consider adding additional Network Interface Controllers
(NIC) or upgrading to 10gbps. Scale out data sources,
targets, and PDI using clustering technology, which
leverages network connectivity across multiple servers.
Ethernet bonding can provide increased throughput as
well as failover.

Network Bottlenecks
Switches, routers, proxy servers, firewalls, and other
network appliances can create bottlenecks. Consider
upgrading or bypassing these altogether.

WAN Optimization

Moving data across a Wide Area Network (WAN) presents
several challenges. Consider moving data sources, data
targets, or PDI servers to the same Local-Area Network
(LAN). There are several techniques and third-party
appliances designed to improve throughput if you must
move data across a WAN. One alternative to direct
database connections is to dump data to a text file and
perform a file transfer using a WAN optimized tool, such
as ExpeDat. Please visit WAN optimization for more
information.

http://www.dataexpedition.com/expedat/
http://en.wikipedia.org/wiki/WAN_optimization

Best Practice PDI Performance Tuning
Pentaho 6

Solution Explanation

Cloud Computing

Network configuration in the cloud can cause issues due
to the lack of transparency in the implementation. Please
visit Amazon EC2 Instance Types and Pentaho and
Amazon Web Services for more information about dealing
with cloud computing.

Ephemeral Storage

Use a local attached Solid State Drive (SSD) instead of an
Elastic Block Store (EBS), which sits on a Network-
Attached Storage (NAS). View the Storage Performance
section below for data loss considerations.

Offline Shipping

In extreme cases, it is faster to ship hard drives overnight
to far off locations, avoiding the network altogether. Large
data migration efforts are commonly used for offline
shipping. Please visit Sneakernet for more information
about offline shipping.

Data Source and Target Performance

The performance of the data source or target can also be the cause of a bottleneck. Database
optimization is a technique for managing performance. Some of the more common approaches to
database optimization are listed below:

Table 6: Database Optimization Techniques
Technique Definition

Query Optimization

Many databases provide a SET EXPLAIN feature that
allows you to determine whether indexes are being used
or if the database is performing a complete table scan.
Constraints and triggers can also affect performance.

Local Export/Import
Import or export a local text file or pipe to /dev/null
and measure the throughput. This may represent the
fastest throughput possible for the data source or target.

Bulk Loaders

Many databases provide bulk loaders that may be faster
than performing insert queries. PDI includes bulk loader
transformation steps for several databases. PDI also
supports calling command-line bulk loaders.

Data Staging/Pre-processing

Consider creating a materialized view, pre-processing
data on the database, or loading a staging table. These
approaches can simplify the ETL logic and possibly reduce
data volume over the network.

Database Technologies
Hadoop, NoSQL, analytical, multi-dimensional, in-
memory, cache, and other database technologies can
provide better performance for certain situations.

http://aws.amazon.com/ec2/instance-types
https://support.pentaho.com/hc/en-us/articles/214361346-Best-Practice-Pentaho-and-Amazon-Web-Services
https://support.pentaho.com/hc/en-us/articles/214361346-Best-Practice-Pentaho-and-Amazon-Web-Services
http://en.wikipedia.org/wiki/Sneakernet

Best Practice PDI Performance Tuning
Pentaho 7

Technique Definition

Replication

Database replication allows a mirror image of a database
to be kept close to PDI. This can reduce or even eliminate
network connectivity between PDI and the data source or
target.

Database Design
Star schemas and other data mart design patterns can
dramatically improve performance at the cost of
additional complexity and resources.

Clustering/Sharding/Partitioning

Some databases support table partitioning or database
sharding, which can improve the performance of certain
types of queries. PDI has functionality for configuring
transformations to leverage these features. View the PDI
Clusters section below for more information about
leveraging these features.

Storage Performance

Data may need to be stored outside of the database when working with data files, staging, batching,
archives, and more. Use the following table as a guide for choosing the correct storage option. The
throughput (MB/s) shown below are only rough estimates:

Table 7: Storage Performance

Solution Approx. MB/S Explanation

RAM Disk 17,000

RAM is the fastest hardware storage option. The
operating system (OS) can be configured to cache files
in RAM. These drives are easily created in Linux or Unix
and mounted to any path like a regular hard drive.
Frequently used files can be cached or staged on RAM
drives for fast access or processing. RAM is expensive,
volatile (erased on reboot), and limited in capacity.

SSD 2,000

SSDs provide fast, non-volatile (permanent) storage
mounted as a local hard drive. These can come in the
form of a Peripheral Component Interconnect Express
(PCIe) card installed on the server motherboard. SSDs
also provide fast, random access compared to
rotational media.

NAS/SAN

30

NAS and Storage Area Networks (SAN) provide fail-over,
redundancy and (optionally) disaster recovery, offsite
backup, huge capacity, and more. These typically
provide access through the Network File System (NFS),
Common Internet File System (CIFS), or the Internet
Small Computer Systems Interface (iSCSI). Third party
vendors can provide local NAS or SAN storage inside
the data centers of cloud providers, such as Amazon
Web Services (AWS). This can provide a high-
performance alternative to S3 and EBS.

Best Practice PDI Performance Tuning
Pentaho 8

Solution Approx. MB/S Explanation

AWS EBS
 30-125

EBS is provided by AWS. It is approximately ten times
more durable than physical HDDs due to replication on
back-end NAS. Snapshots or RAID10 is still
recommended. Striping EBS volumes can increase
performance and capacity.

AWS Glacier See description

AWS Glacier is a low-cost, long-term, cold storage.
When you make a request to retrieve data from Glacier,
you initiate a retrieval job. Once the retrieval job
completes, your data will be available to download for
24 hours. Retrieval jobs typically finish within three to
five hours. Upload and download speeds may be
similar to S3.

AWS S3 1
The eventual consistency model is a major factor
affecting usage. S3 performance is also much slower
than EBS. Please visit Amazon S3 for more information.

vHDD (virtual
HDD)

Depends on type

Virtual hard drives (vHDD) are used by virtual machines
(VM). The vHDD is presented to the VM as a local hard
drive. These are typically files stored on an NAS or SAN
but can be locally attached storage as well.

Performance, cost, capacity and other specifications
depend on multiple factors. These include cost of the
storage server, capacity limits imposed by the file
system, or VMware. Some other factors may include
cloud infrastructure, speed of networking and storage
servers, load on shared resources, and more.

vHDDs can be thin-provisioned (i.e. a 100GB vHDD)
with 10GB data. It will only occupy 10GB on backend
storage, but will appear as 100GB to the VM's OS.

vHDDs can also be expanded easier than physical
storage. In some cases, the Logical Volume Manager
(LVM) can support expansion of a vHDD with zero down
time.

HDD (physical)
 750

The throughput shown is for a single hard drive. RAID
configurations can provide redundancy, fail-over,
higher capacity, faster throughput, and lower latency.
Rotational media can be significantly slower for
random access compared to RAM and SSD.

https://aws.amazon.com/s3/

Best Practice PDI Performance Tuning
Pentaho 9

PDI Performance Tuning

PDI performance is likely the issue when there is a transformation bottleneck. This section provides
techniques for tuning various aspects of PDI, including:

• PDI Transformation Design
• PDI Job Design
• Scaling Up Transformations
• PDI Clusters
• PDI Visual MapReduce for Hadoop

You should start with optimizing ETL to be as efficient as possible, and then evaluate platform-
related factors, such as hardware sizing and clustering.

PDI Transformation Design

PDI contains several techniques for designing and building ETL transformations. This section
contains best practices for maximizing transformation performance.

Query Management
The following table discusses techniques for managing queries to improve transformation
performance:

Table 8: Query Management
Technique Definition

Data Caching

High network latency can make executing multiple
queries much slower than running a single bulk query.
Most lookup steps give you cache lookup values. You can
also perform up-front loading of records in a single query
and cache the results, instead of performing multiple
queries

Batch Updates

Batch updates can also reduce the number of queries.
The commit size setting controls the size of the batches.
Please visit the Table Output Step for more information
about using batch updates.

http://wiki.pentaho.com/display/EAI/Table+Output

Best Practice PDI Performance Tuning
Pentaho 10

Database Management
The following table discusses various techniques for managing your database to improve
transformation performance:

Table 9: Database Management

Technique Definition

Database Sorting

Sorting on the database is often faster than sorting
externally, especially if there is an index on the sort
field(s). Visit the Memory Utilization section below for
information on configuring the Sort rows step to leverage
memory and CPU resources.

Prepared Statements

Most database steps prepare statements, which incurs
some overhead up front but improves performance
overall. The Execute SQL Script, Execute row SQL
Script, and Dynamic SQL row steps do not perform this
initial statement preparation and may not perform as
well.

Database Processing

Performance will be better if data is processed directly on
the database, in some cases. This approach may eliminate
the need for a PDI transformation. Data can be pre-
processed or staged on the database to simplify PDI
transformations. Transformation logic can also be moved
to the target sources in an ELT design pattern. Stored
procedures, triggers, materialized views, and aggregation
tables are just some of the techniques that can be
leveraged.

Real-time Data on Demand
PDI contains various tools for viewing data in real-time, including Report Bursting. PDI
transformations can feed results into a PDI report template and burst the report out through email,
or to a file server without having to stage the data in a reporting table.

Figure 2: Report Bursting

Best Practice PDI Performance Tuning
Pentaho 11

Some other techniques for viewing data in real-time include:

• Extract, Transform, and Report– PDI transformations support Extract, Transform, and
Report (ETR). Pentaho reports and dashboard frameworks can use PDI transformations as a
native data source.

• PDI Thin JDBC driver– Any application that connects to an Open Database Connectivity
(ODBC) or Java Database Connectivity (JDBC) data source can send an SQL query to a PDI
transformation. It does this by using the PDI JDBC driver. PDI will parse the where clause
and pass criteria into transformation parameters that can drive the logic of the
transformation. The transformation feeds the results back to the client application as a
normal JDBC query result set. This can support near real-time analytics.

Scripting
The JavaScript step provides enormous flexibility, but it may not perform as well as other highly
optimized, single-purpose transformation steps. The following table provides techniques for
improving JavaScript step performance:

Table 10: JavaScript Performance Techniques

Technique Definition

Compatibility mode
Turn off compatibility mode when not needed. This will
run the newer, faster JavaScript engine.

Step plugin Consider writing a step plugin. This can provide better
performance than using a JavaScript step.

User Defined Java Class A User Defined Java Class step may perform better than
a JavaScript step.

Some other things to consider when designing transformations include:

• Constant and Static Values– Avoid calculating the same static value on every row. You can
simply calculate constants in a separate transformation and set variables to be used in
downstream transformations. You can also calculate constants in a separate stream and use
the Join Rows (Cartesian product) step to join the constant into the main stream.

• Lazy Conversion– This setting will postpone data conversion as long as possible. This
includes character decoding, data conversion, and trimming. This can be helpful if certain
fields are not used, if data will be written out to another text file, or in some bulk loader
scenarios.

• NIO Buffer Size– This parameter determines the amount of data read at one time from a
text file. This can be adjusted to increase throughput.

• Performance Monitoring and Logging – Detailed Performance Monitoring and Logging can
be very helpful in development and test environments. The logging level can be turned
down and performance monitoring can be disabled for production environments to
conserve resources. Please visit PDI Performance Tuning Tips for more information about
logging and performance monitoring.

https://support.pentaho.com/hc/en-us/articles/115001733243
http://help.pentaho.com/Documentation/5.4/0L0/0Y0/070/030

Best Practice PDI Performance Tuning
Pentaho 12

PDI Job Design

PDI contains several techniques for designing and building ETL Jobs. This section provides best
practices for improving job performance.

Looping
Avoid creating loops in PDI jobs. In the example below, the Get customer info transformation gets a
customer record, and then the Send report transformation sends a report to that customer. The
Send report transformation continues to the DUMMY job entry and loops back to Get customer
info. It retrieves the next customer and the loop continues until there is no data left.

Figure 3: Looping

Set the Execute for every input row setting instead of creating a loop in the job.

Figure 4: Job Entry Details

The Get customers info transformation will retrieve the customers and send them to the Send
report transformation, which will run once for every incoming row. This approach achieves the
same result and will perform better.

Some other techniques to consider when designing ETL jobs include:

• Database Connection Pooling– There is some overhead with establishing new database
connections at run time. Enable connection pooling to maintain a pool of open connections
that can be used as needed by the job or transformation.

• Checkpoints– You can specify checkpoints in your jobs and restart jobs from the last
successful checkpoint. This avoids having to re-start jobs from the beginning in case of
failure.

Best Practice PDI Performance Tuning
Pentaho 13

Scaling Up Transformations

This section describes how transformations and jobs can be configured to leverage memory and
CPU resources.

CPU and Multithreading
PDI transformations are multithreaded. This means you can increase the number of copies of a step
to increase threads assigned to that step, which allows you to assign more CPU resources to slower
steps. Each step in a transformation gets its own thread, and transformation steps run in parallel.
Doing this leverages multiple cores, for example:

Figure 5: Row Denormaliser

The Row denormalizer step is assigned three step copies that will spawn three threads. Each of the
other steps will spawn its own thread. Therefore, the transformation will spawn a total of nine
threads that could utilize up to nine cores on the PDI server.

Make sure not to allocate too many threads, as this can degrade performance. Optimal
performance is achieved by keeping the number of steps to less than three to four times the
number of cores.

Some other techniques for leveraging memory and CPU resources include:

• Blocking Steps– The Blocking step and Block this step until steps finish steps allow you
to pause downstream steps until previous steps have completed. This may be necessary for
the logic to function properly, but it may increase the overall time for the transformation to
complete. It also requires more memory because the row buffers will fill up with results
from all rows before proceeding.

• Parallel Transformations– PDI job entries normally run sequentially. You can configure the
job to run two or more transformations in parallel.

• Transformation Combining– Combining two or more transformations into a single
transformation will run all steps in parallel.

Memory Utilization
Numerous PDI transformation steps allow you to control how memory is utilized. Allocating more
memory to PDI in conjunction with the fine-tuning step settings can have a significant impact on
performance, for example:

Best Practice PDI Performance Tuning
Pentaho 14

Creating a Row Buffer
• Recommendation: Create a row buffer between each step.
• Rationale: Row buffers are stored in memory, so this setting allows you to increase or

decrease memory used for the buffers.
• Solution: Configure the size of the buffer (in rows) by going to Transformation settings,

Miscellaneous tab, and modify the Nr of rows in rowset setting.

Sorting Rows
• Recommendation: Sort the rows in memory.
• Rationale: Sorting all rows in memory is significantly faster than using a memory-plus-disk

approach.
• Solution: Use the Sort size (rows in memory) setting on the Sort rows step to control this.

The Free memory threshold (in %) helps avoid filling up available memory. Be sure to
allocate enough RAM to PDI. The Compress TMP Files setting can also conserve memory at
the cost of CPU resources.

Joins and Lookups Steps
• Recommendation: Use joins and lookup steps to configure data caching.
• Rationale: It reduces the number of database queries and improves performance at the

cost of using more memory.
• Solution: Use the configuration settings to control cache size.

PDI Clusters

PDI clusters allow you to distribute a PDI transformation across multiple servers to leverage more
CPU, memory, and network resources. This section provides an overview of the many ways clusters
can be used to improve performance.

Figure 6: PDI Cluster

Best Practice PDI Performance Tuning
Pentaho 15

The following is a list of things to keep in mind when working with PDI clusters:

PDI Deployment
• PDI clusters are completely software based and can be deployed in several ways, including

physical servers, virtual servers, on premise or in the cloud, or on a Hadoop cluster using the
Start/Stop a YARN Kettle Cluster steps.

Master and Slave Services
• PDI clusters consist of a master service and one or more slave services. Each master and

slave service is implemented by a light-weight web service called Carte.
• Multiple slave services can run on the same server as the master (master server) or on

separate servers (node servers).
• A master service can be configured to be dynamic. This allows new slave services to self-

register with the master service without interrupting transformations currently running on
the cluster.

• Currently running transformations will continue to run on the same set of slave services.
Subsequent transformations will take advantage of all the nodes in the cluster.

• The master service will monitor tech servers and will remove slave services that are not
available after a threshold has been met.

AWS Auto Scaling
• AWS Auto Scaling can be implemented to allow you to increase or decrease the size of the

cluster based on conditions that you define.

Transformations currently running on a disabled node will fail.

Clustered Transformations
There are several ways to work with clustered transformations in PDI. The following figure is an
example of a clustered transformation when the calc elapsed time and out_read_lineitems steps
are run on the master and the other steps are run on the nodes:

Figure 7: Clustered Transformation

Best Practice PDI Performance Tuning
Pentaho 16

The following table presents techniques for working within clustered transformations:

Table 11: Clustered Transformation Techniques

Technique Definition

Enable Clustering
You can enable clustering in a transformation job entry by
setting the Run this transformation in a clustered
mode setting.

Non-clustered Mode
All transformation steps are configured to run in non-
clustered mode. Non-clustered steps only run on the
master service.

Clustered Mode

Individual transformation steps may be configured to run
in clustered mode. These steps will be distributed and run
across slave services. A clustered transformation is one
that has at least one step configured to run in clustered
mode.

Slave and Master services

Slave services must pass data back to the master service if
a non-clustered step follows a clustered step. You should
try to run as many steps as possible in clustered mode to
this. Ideally, all steps are clustered allowing the entire
transformation to run in parallel across node servers with
no cross-traffic.

Scaling Servers

You should first scale up servers and then develop a PDI
cluster due to the additional complexity involved in
designing a clustered transformation. Not all
transformations are well suited to clustering, but all
transformations are multithreaded and may be scaled up
easily on a single server.

Partitioning
The following is a list of things to keep in mind when partitioning data within the cluster:

Partitioning Scheme
• A database table may be partitioned across the cluster using a partitioning scheme. For

example, a customer table may be partitioned across a three-node cluster based on the
APAC, EMEA, and AMER regions.

• PDI allows you to create a corresponding partition scheme that maps to the clustered
database connection.

• The partition scheme can be applied to clustered transformation steps. This allows for
creating efficient data pipelines. These pipelines are called swim lanes, and they map
specific PDI node servers to specific database nodes. This reduces cross-traffic and
maximizes network throughput.

Best Practice PDI Performance Tuning
Pentaho 17

Look up Data
• Lookup data can also be divided across node servers based on a partition scheme. For

example, each PDI node can pre-load a cache of lookup records that are specific to the data
being processed by that node.

Parallel Reads and Writes
• Partitions can be used for parallel reads from data sources or writes to data targets.
• Partitions may also be used for reading multiple text files into multiple PDI nodes, whereby

each node can be aware of the files and data it is working with. Some NAS storage clusters
implement a headless configuration that allows simultaneous, parallel connectivity to each
node in the cluster. This allows for swim lanes that map to PDI clusters for reading and
writing files.

Database Clusters
• Database clusters allow large data sets to be stored across multiple servers.
• You can configure a database connection to include the list of database servers that make

up the cluster in PDI. This allows PDI nodes to connect to separate database nodes providing
maximal network throughput.

The following figure is an example of a fully distributed cluster:

Figure 8: Distributed Cluster

Best Practice PDI Performance Tuning
Pentaho 18

The following table lists the components of the distributed cluster:

Table 12: Distributed Cluster Components

Component Definition

NAS Storage Cluster
A clustered transformation will extract customer data
stored in files on a NAS storage cluster and load it into a
database cluster.

Database Cluster with Partitioned
Tables

The customer table is partitioned by customer name on
the database cluster. The PDI transformation has the
database cluster configured and the partition scheme
mapped.

PDI Nodes
Each PDI node will connect to a specific database node
and will extract those files on the NAS that correspond to
the table partition that exists on the database node.

Each PDI node connects to a separate node on the NAS storage cluster and a separate node on the
database cluster. This provides maximum network efficiency by creating swim lanes from the
source, through PDI, to the data target. The partition scheme ensures there is no cross-traffic.

PDI Visual MapReduce for Hadoop

PDI allows you to deploy transformations as MapReduce jobs on a Hadoop cluster in a process
called Visual MapReduce. This section illustrates some of the advantages of using this approach.

Figure 9: Hadoop Visual MapReduce

Best Practice PDI Performance Tuning
Pentaho 19

The Visual MapReduce process allows you to create MapReduce jobs using the same visual, drag-n-
drop interface and zero-code transformation steps used for creating regular PDI transformations.

The following is a list things to keep in mind when working with Visual MapReduce:

PDI Connectivity
• PDI uses an adaptive big data layer called shim. PDI works with several Hadoop

distributions, and shim works as a translator, providing a transparent, consistent interface
for working with Hadoop.

Mapper, Combiner, and Reducer
• Visual MapReduce involves a mapper transformation (required), combiner transformation

(optional), reducer transformation (optional), and a PDI job with a Pentaho MapReduce
step. The step must be configured to connect to a Hadoop cluster, and then submitted to a
MapReduce job using the mapper, combiner, and reducer transformations.

• Mapper, combiner, and reducer transformations are PDI transformations with a
MapReduce Input step, a MapReduce Output step, and any number of other
transformation steps that transform data.

Pentaho MapReduce Job Entry
• The PDI engine will automatically deploy to each node in the Hadoop cluster when a

Pentaho MapReduce job entry is executed.
• The Pentaho MapReduce job will run on each node in the cluster working with local data.

There is no special configuration required on the Hadoop cluster because PDI will take care of
deploying the PDI engine. Subsequent Pentaho MapReduce jobs will not require deploying the
engine as it remains cached on the Hadoop cluster.

Best Practice PDI Performance Tuning
Pentaho 20

Related Information

Please visit the following links for more information about topics discussed in this document:

Best Practice Documentation

• Pentaho and Amazon Web Services
• Performance Monitoring and Logging

Pentaho Documentation

• PDI Performance Tuning Tips
• Pentaho Hardware and Software Requirements

Pentaho WIki

• Partitioning data with PDI
• Pentaho Community Wiki
• Table Output Step

Amazon

• Amazon S3
• Amazon EC2 Instance Types
• Amazon EC2 Instance Store

Additional Resources

• ExpeDat
• WAN optimization
• Sneakernet

https://support.pentaho.com/hc/en-us/articles/214361346-Best-Practice-Pentaho-and-Amazon-Web-Services
https://support.pentaho.com/hc/en-us/articles/115001733243-Best-Practices-PDI-Logging-Monitorin
http://help.pentaho.com/Documentation/5.4/0L0/0Y0/070/030
http://help.pentaho.com/Documentation/5.4/0D0/160/000
http://wiki.pentaho.com/display/EAI/Partitioning+data+with+PDI
http://wiki.pentaho.com
http://wiki.pentaho.com/display/EAI/Table+Output
https://aws.amazon.com/s3/
http://aws.amazon.com/ec2/instance-types
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
http://www.dataexpedition.com/expedat/
http://en.wikipedia.org/wiki/WAN_optimization
http://en.wikipedia.org/wiki/Sneakernet

	Overview
	Performance Tuning Process
	Identifying, Eliminating, and Verifying Bottlenecks
	Identifying Bottlenecks with Step Metrics
	Eliminating Bottlenecks
	Verifying Bottlenecks

	External Performance Factors
	Network Performance
	Data Source and Target Performance
	Storage Performance

	PDI Performance Tuning
	PDI Transformation Design
	Query Management
	Database Management
	Real-time Data on Demand
	Scripting

	PDI Job Design
	Looping

	Scaling Up Transformations
	CPU and Multithreading
	Memory Utilization
	Creating a Row Buffer
	Sorting Rows
	Joins and Lookups Steps

	PDI Clusters
	Clustered Transformations
	Partitioning

	PDI Visual MapReduce for Hadoop

	Related Information

