
PDI Techniques - Design
Guidelines

Change log (if you want to use it):

Date Version Author Changes

Contents
Overview .. 1

Before You Begin .. 1

Server Configuration .. 2

Enable Spoon Connection Option .. 2

Avoid Using JNDI ... 2

Naming the Connections... 2

Follow the Lifecycle Management Guidelines .. 3

Use SQL for the Database ... 3

Avoid Stored Procedures and Database Views .. 3

Development for Transformations .. 4

Create Pre-Job Entry Transformations .. 4

Add Descriptive Notes ... 4

Avoid Overloading Transformations ... 4

Create Transformations One Step at a Time .. 5

Name Items Consistently .. 5

Parameterize Jobs and Transformations .. 5

Label with Dummy Steps .. 5

Control Transformation Environments ... 6

Using Variables ... 7

Use Parameters for Variables ... 7

Separate KETTLE_HOME Variables ... 7

Use Variables for External References .. 7

Validate Job Variables .. 7

Logging .. 8

Use Logging Tables .. 8

Redirect Output to Kettle Logging ... 8

Subjob for One Log File ... 8

Track Audits on Target Tables .. 8

Row-Level Logging ... 9

Error Handling for Root Job Failures.. 9

Mondrian Cache ... 10

Clear the Mondrian Cache .. 10

Prime the Mondrian Cache ... 10

Personal JVM Job Execution .. 10

JSON Parsing ... 11

Separate Tasks with JSON Parsing ... 11

Use JavaScript for Multilevel JSON ... 11

Expedite Parsing ... 11

Related Information ... 11

Pentaho Data Integration Design Guidelines

Page 1

© Hitachi Vantara Corporation 2017. All Rights Reserved

Overview
This document covers some best practices on designing and building your Pentaho Data Integration
(PDI) transformations and jobs. You will learn how to create transformations and jobs for maximum
speed, reuse, portability, maintainability, debugging, and knowledge transfer.

The intention of this document is to speak about topics generally; however, these are the specific
versions covered here:

Software Version(s)

Pentaho 6.x, 7.x, 8.0

The Components Reference in Pentaho Documentation has a complete list of supported software and
hardware.

Before You Begin
Before beginning, use the following information to prepare for the procedures described in the main
section of the document.

This document is arranged in a series of topic groups, with individual best practices for the topic
explained. It is not intended to demonstrate how to implement each best practice or to provide
templates on the practices defined within.

https://help.pentaho.com/Documentation/8.0/Setup/Components_Reference

Pentaho Data Integration Design Guidelines

Page 2

© Hitachi Vantara Corporation 2017. All Rights Reserved

Server Configuration
This section contains steps for enabling and naming Spoon connections, tips for avoiding the Java
Naming and Directory Interface (JNDI), and guides for repository and database usage.

You can find details on these topics in the following sections:

• Enable Spoon Connection Option
• Avoid Using JNDI
• Naming the Connections
• Follow the Lifecycle Management Guidelines
• Use SQL for the Database
• Avoid Stored Procedures and Database Views

Enable Spoon Connection Option
Because Spoon defaults to writing all the shared connection information into every transformation or
job file, we recommend you enable Spoon’s Only save used connections to XML? option.

This setting will keep only those connections used by that specific transformation or job in the XML
file.

Avoid Using JNDI
Since PDI has its own algorithms for allocating and using unique connections per step, you do not
need to rely on JNDI and connection pooling.

Therefore, we recommend that you:

• Avoid JNDI or similar settings used in enterprise applications for PDI, unless the
transformation will run inside the Pentaho Server.

• Use variables to parameterize /hide the connection credentials.
• Avoid connection pooling.

Naming the Connections
Variables make changes to databases over time. To prevent having to change all instances of MySQL
when you migrate to Oracle, make sure you name your connections without using the words
Production, Development, Oracle, or MySQL.

When you migrate from Production to Development, change the underlying KETTLE_HOME. This will
swap out your connections and the changes will apply in that unique environment.

Pentaho Data Integration Design Guidelines

Page 3

© Hitachi Vantara Corporation 2017. All Rights Reserved

Follow the Lifecycle Management Guidelines
Although the Pentaho Repository does offer a basic version control system (VCS), that system is not
intended to replace any common market VCS tools, such as Git, that you may already be using.
Instead, the repository’s solution is intended only as a simpler possibility for customers who do not
have a company standard VCS in place.

If you already have a VCS, integrate Pentaho with it in development to allow for a more controlled
development and release process. While in development, use a file-based workflow. Then, promote
your contact to the Pentaho Repository for User Acceptance Testing (UAT) and production.

Use SQL for the Database
We recommend that you do not use PDI steps for features that a database could perform better. A
database is often more efficient at sorting and joining than PDI can be.

Remember, this is not an absolute statement, and using your database management system (DBMS)’s
SQL can lead to overly complex SQL input.

Avoid Stored Procedures and Database Views
We recommend that you avoid using stored procedures for lookups and database views for inputs.

Views are typically slow to return data. It will be more efficient for you to replace the view SQL in the
PDI input step than to call that view with an additional WHERE clause.

Stored procedures can function well for inputs, but do not use them for lookups, since they are much
slower than PDI is. PDI can process several thousand records per second. If each of those rows must
go out to a database and run a stored procedure, processing will be slower.

Pentaho Data Integration Design Guidelines

Page 4

© Hitachi Vantara Corporation 2017. All Rights Reserved

Development for Transformations
Here you will find information on transformation development. Details on these topics can be found
in the following sections:

• Create Pre-Job Entry Transformations
• Add Descriptive Notes
• Avoid Overloading Transformation
• Create Transformations One Step at a Time
• Name Items Consistently
• Parameterize Jobs and Transformations
• Label with Dummy Steps
• Control Transformation Environments

Create Pre-Job Entry Transformations
Create a transformation before creating the job entry that calls that transformation. Create subjobs
before creating the jobs that call them.

This allows you to design, code, debug, and test each individual piece of your job without requiring
you to run it as part of a larger process. Designing and building from the inside out in this way is key
to a modular design.

Add Descriptive Notes
Assign at least one descriptive note to each transformation and job. These notes allow anyone
reviewing the code, or taking over support of it, to understand decisions behind the logic or changes.
Any major changes to the logic or flow should also specify who made the change.

Avoid Overloading Transformations
If you put more than one data process into a transformation, the processes can get mixed up and
become confusing. In addition, such a combined transformation or job can make running one process
difficult if the source system for another process in the same transformation or job is down.

Instead, split processing into one transformation per source system for the type of destination data
you are working with.

Pentaho Data Integration Design Guidelines

Page 5

© Hitachi Vantara Corporation 2017. All Rights Reserved

Create Transformations One Step at a Time
Create your transformations one step at a time. This makes testing and debugging easier, as you are
adding just one new variable, process, or step to the transformation at a time, so you can isolate
problems.

Start with the input when you create a transformation. Test existing steps before adding another step.
Add further steps only after you receive the expected result. Do not add or try to connect up multiple
steps at the same time.

Working this way allows you to start from a working process each time you add new steps to your
transformation.

Name Items Consistently
Name transformations, jobs, and steps consistently, using the same convention each time. This will
allow you to see what type of task is being performed when you review logs and files.

Consider a naming convention such as choosing a prefix of the task type, followed by descriptive
text, for a job entry. For a transformation step, consider a prefix of the type of step, followed by
descriptive text.

Parameterize Jobs and Transformations
Create your transformations starting with fixed inputs, outputs, and configurations. Ensure the basic
transformation or job is working without variables.

At this point, you should introduce variables before deploying your jobs or transformations into the
server. Parameterized jobs and transformations only work once with fixed values.

This allows you to start from a working process with less complexity. It also makes testing and
debugging easier, as you are parameterizing what was once already working. Trying to debug
parameters, and the logic of the transformation, is difficult.

Label with Dummy Steps
Use Dummy (Do nothing) PDI steps to label your data flows. This will allow you to see the number of
rows flowing through this branch in the logs. It also buffers you from downstream changes, because
only the steps after the dummy step will need to change, and that will not affect the branching.

Rename each dummy step to better describe the data that flows through that part of the
transformation. Use this technique after each filter, case, error, or any other type of branching in
the data flow.

Pentaho Data Integration Design Guidelines

Page 6

© Hitachi Vantara Corporation 2017. All Rights Reserved

Control Transformation Environments
Prior to deployment, develop in a controlled desktop environment, maximizing your time spent in
Spoon. This makes transformations easier to build, test, and debug. Migrate from there to Kitchen or
the server only after things are working and fully parameterized.

A sample workflow could be:

1. Create and unit-test your transformations in Spoon, while disconnected from a server.
2. Run the job via Kitchen, once the process is tested and working properly.
3. If that is successful, then migrate the code to a server environment running Pentaho Server

or Carte.

Pentaho Data Integration Design Guidelines

Page 7

© Hitachi Vantara Corporation 2017. All Rights Reserved

Using Variables
This section provides information on variables and their use. You can find details on these topics:

• Use Parameters for Variables
• Separate KETTLE_HOME Variables
• Use Variables for External References
• Validate Job Variables

Use Parameters for Variables
Use parameters to pass variables into jobs and transformations. Then, at runtime, you can set a
parameter to different values to influence the behavior.

This approach allows you to test each transformation and job without relying on global variables. Use
variables themselves only to set global variables for an entire job flow.

Separate KETTLE_HOME Variables
When KETTLE_HOME files are shared between projects, values can be mixed and shared improperly.
This can cause security and data issues.

Instead, try a different KETTLE_HOME variable for each environment (development, QA, production),
customer, and project. Pentaho scripts can use the KETTLE_HOME variable at startup to alter the files
used for that runtime environment.

Use Variables for External References
Use variables and/or parameters for any external reference outside of Pentaho. This applies to host,
user, password, directory, filename, and so on.

This will make it easier to migrate from development to QA and production. It will also externalize
security sensitive connection information so that developers do not need to know the associated
passwords to use the connection.

Validate Job Variables
Before you start the main job, validate all variables and settings required for proper operation, to
avoid later connection errors. You can use data validation steps inside transformations, in job-level
connections, and in table testing.

Especially critical during transitions between development, QA, and production environments, this
approach avoids the problem of getting deep into a job’s execution only to find that the environment
was not properly set up at the start.

Pentaho Data Integration Design Guidelines

Page 8

© Hitachi Vantara Corporation 2017. All Rights Reserved

Logging
In this section, you will find ways to navigate through logging operations and optimize them.

More information on these topics is available in:

• Use Logging Tables
• Redirect Output to Kettle Logging
• Subjob for One Log File
• Track Audits on Target Tables
• Row-Level Logging
• Error Handling for Root Job Failures

Use Logging Tables
Use job, transformation, and channel logging tables so you can track performance over time. Use the
kettle.properties variables instead of creating your own variables or selectively defining which
transformations and jobs get logged.

Redirect Output to Kettle Logging
Change the kettle.properties variables of KETTLE_REDIRECT_STDERR and STDOUT to Y to
redirect all output to KETTLE logging destinations.

These variables are set to N by default. Turning them to Y gives STDERR and STDOUT more information
useful for logging and debugging errors.

Subjob for One Log File
When you are executing jobs in Pentaho Server or Carte, use a subjob that writes to one log file for
the entire execution. This organizes all job-related logging into one file. To accomplish this, when you
launch the subjob, complete the Logging tab on the job entry of the main job.

If you have a server running more than one job at a time, this will make it easier to research an error.

Track Audits on Target Tables
Place audit fields, such as the batch, job, or root channel ID, on each target table to keep track of which
records were loaded by which job. You can then cancel certain records or an entire batch, after the
fact. The root channel ID will be captured for the root job and used on the channel log table to keep
track of all transformations and jobs that start under that root job.

Pentaho Data Integration Design Guidelines

Page 9

© Hitachi Vantara Corporation 2017. All Rights Reserved

Row-Level Logging
Use the JavaScript writeToLog() function for more formatting precision on row-level logging, if you
have transformations where each field has its own row.

Row-level logging is useful to track the branching and flow of data during development and testing.

This function will be disabled by default, since most production environments do not use detailed
logging or higher. To set the function up, set the logging level to DEBUG. Levels below this should not
be used for row-level logging. The highest level already logs rows, so this approach is only useful at
the DEBUG or DETAILED levels.

Be sure row-level logging is disabled after testing.

Error Handling for Root Job Failures
Since all job-level failures need to be logged or acted on by operators, enable error handing for all
failure cases of all root job entries, as well as for transformation steps that can produce an error or
exception.

Rows can be handled individually when you use row-level error handling. The transformation may
continue successfully without processing the error rows, and those rows can still be processed in
subsequent transformations.

Each job entry has a TRUE and a FALSE path. The FALSE path should always point to a failed action.
All subjobs and/or subtransformations will trigger the failproof root-level handlers set in place.

For transformation steps, right-click on each and choose Error handling…. On the next screen, check
the Enable the error handling? box and click OK. Make sure to choose the right step (likely a dummy
step) and add on all the related error-handling fields for context.

Pentaho Data Integration Design Guidelines

Page 10

© Hitachi Vantara Corporation 2017. All Rights Reserved

Mondrian Cache
In this section, you will find information on clearing and priming the Mondrian cache, as well as JVM
job execution.

• Clear the Mondrian Cache
• Prime the Mondrian Cache
• Personal JVM Job Execution

Clear the Mondrian Cache
Clear the Mondrian cache after each extract/transform/load (ETL) load, either by using the Pentaho
User Console (PUC) or an HTTP step in PDI.

Data used in Analyzer can be out of sync with the database if new data is loaded while the old data
has been cached. Clearing the Mondrian cache will trigger the application to requery the database to
get the latest data after the load.

Prime the Mondrian Cache
Prime the Mondrian cache after clearing it, either by running xaction scripts, using Community Data
Access (CDA), or scheduling Analyzer reports to run on a schedule to fill the cache.

Users will experience longer load times with an empty cache, so taking this action speeds things up.

Personal JVM Job Execution
For loads that do not happen continuously, use Kitchen to execute jobs in their own Java Virtual
Machine (JVM) and to log their output separately from one another.

Shorter-running JVMs are less susceptible to memory issues than longer-running JVMs.

Pentaho Data Integration Design Guidelines

Page 11

© Hitachi Vantara Corporation 2017. All Rights Reserved

JSON Parsing
In this section, you will find ways to use JavaScript Object Notation (JSON) for tasks, and how to
optimize parsing.

More information on these topics is available in:

• Separate Tasks with JSON Parsing
• Use JavaScript for Multilevel JSON
• Expedite Parsing

Separate Tasks with JSON Parsing
When you parse a JSON file, the input step must read the entire file before it begins parsing. This limits
the effective size of the JSON file.

A way around this is to make the JSON input data split at one valid object per row, instead of
processing as one object per file. Use the Text file input PDI step to read the raw data, and the JSON
Input step to parse each row.

Use JavaScript for Multilevel JSON
If your JSON has embedded arrays in objects, use the Modified Java Script Value step to parse the
entire object. Using this method is more efficient than using multiple JSON Input steps. You can easily
configure the Modified Java Script Value step to parse many levels in one pass.

Expedite Parsing
Use multiple copies of JSON/JavaScript steps to speed up JSON parsing.

Since the Modified Java Script Value step can only pass one level at a time, and JSON parsing is CPU-
intensive, if you can split up the tasks across multiple cores, it will be faster.

You can do this by reading each row as an object. Enable multiple copies by right-clicking on a step
and choosing Change Number of Copies to Start….

Related Information
Here are some links to information that you may find helpful while using this best practices document:

• Pentaho Components Reference

https://help.pentaho.com/Documentation/8.0/Setup/Components_Reference

	Overview
	Before You Begin

	Server Configuration
	Enable Spoon Connection Option
	Avoid Using JNDI
	Naming the Connections
	Follow the Lifecycle Management Guidelines
	Use SQL for the Database
	Avoid Stored Procedures and Database Views

	Development for Transformations
	Create Pre-Job Entry Transformations
	Add Descriptive Notes
	Avoid Overloading Transformations
	Create Transformations One Step at a Time
	Name Items Consistently
	Parameterize Jobs and Transformations
	Label with Dummy Steps
	Control Transformation Environments

	Using Variables
	Use Parameters for Variables
	Separate KETTLE_HOME Variables
	Use Variables for External References
	Validate Job Variables

	Logging
	Use Logging Tables
	Redirect Output to Kettle Logging
	Subjob for One Log File
	Track Audits on Target Tables
	Row-Level Logging
	Error Handling for Root Job Failures

	Mondrian Cache
	Clear the Mondrian Cache
	Prime the Mondrian Cache
	Personal JVM Job Execution

	JSON Parsing
	Separate Tasks with JSON Parsing
	Use JavaScript for Multilevel JSON
	Expedite Parsing

	Related Information

