

Continuous Integration
with Pentaho

Change log (if you want to use it):

Date Version Author Changes

Contents
Overview .. 1

Before You Begin .. 1

Use Case 1: Constant Changes ... 1

Use Case 2: Sharing the Work .. 1

Continuous Integration (CI) with Pentaho .. 2

Code and Content Repository .. 2

Continuous Integration Server ... 4

Step 1: Source Code System Definition ... 4

Step 2: Trigger the Process ... 5

Step 3: Building the Code and Performing Tests ... 5

Step 4: Solution Package Generation .. 7

Related Information ... 7

Finalization Checklist.. 8

This page intentionally left blank.

Continuous Integration with Pentaho

Page 1

© Hitachi Vantara Corporation 2017. All Rights Reserved

Overview
This document covers some best practices on continuous integration (CI), including how you can use
CI during development, automatically building software whenever changes have been made on the
system or code. CI functions as a second line of defense to let you know of errors as soon as possible,
which lets you focus more on development. Jenkins is a market tool used to facilitate the integration
of the components present in CI architecture.

Our intended audience is Pentaho administrators and developers, as well as IT professionals who help
plan software development. The examples and instructions are geared toward a situation where you
are using Git as a code repository and Maven as a building tool, but other configurations would work
if you applied the same principles found throughout this document.

Software Version(s)

Pentaho 6.x, 7.x, 8.x

The Components Reference in Pentaho Documentation has a complete list of supported software and
hardware.

Before You Begin
Here are some terms you should be familiar with:

• Continuous integration (CI): The processes of continually and regularly updating the code
base to reflect changes made to it by developers, to keep final integration and merging of
the code more simple, easy, and quick.

• Versioning: Creating a new version of a system or software is referred to as versioning. A
version control system (VCS) is a method to keep records of changes to software over time so
that you can avoid conflicts of different people saving over each other’s changes and can
also roll back the code to a previous version if you need.

Use Case 1: Constant Changes

The central big data administration department of Company A needs to ingest data from several
data sources. They have many developers working together in the different ETL projects around
the ingestion process. The managers’ main concern is how to handle the continuous changes in
the processes and guarantee the quality of each development.

Use Case 2: Sharing the Work

Company B has developers distributed around the world, and seeks to manage a Pentaho ETL
project using Agile methodologies so that they can share the workload of their projects worldwide.
Developers from different time zones working in the same projects must have a centralized
repository and integration platform for the entire team.

https://wiki.jenkins.io/display/JENKINS/Home
https://help.pentaho.com/Documentation/8.1/Setup/Components_Reference

Continuous Integration with Pentaho

Page 2

© Hitachi Vantara Corporation 2017. All Rights Reserved

Continuous Integration (CI) with Pentaho
Continuous integration within Pentaho projects is important to the success and lifecycle of software
development. Here are the topics covered in this section:

• Code and Content Repository
• Continuous Integration Server

This end-to-end diagram shows the workflow between various stages in the CI process, and highlights
the positioning of the main tools used in the field:

Figure 1: Continuous Integration Workflow and Tools

Code and Content Repository
A centralized repository is important to your development team’s collaboration. Pentaho is equipped
with an Enterprise Repository that offers basic versioning capabilities. However, if you use Pentaho
Enterprise Repository, you can only use Jenkins in scheduled mode. This means that you would not be
able to build a total CI solution, because changes in any Pentaho artifacts would not trigger automatic
execution of your Jenkins job. Table 1 has a list of repository recommendations.

We recommend basic versioning for organizations that are not familiar with version control
systems (VCS) or for small development teams with limited agile development requirements.

Continuous Integration with Pentaho

Page 3

© Hitachi Vantara Corporation 2017. All Rights Reserved

Many organizations already have third-party enterprise VCS tools like Git or Subversion.

Table 1: Repository Recommendations

Recommendation Details

Use a Third-Party
Enterprise Repository

Use this kind of repository on development environments, because
those environments have better integration with CI capabilities,
mature versioning systems, and more version control capabilities
needed for agile developments.

Set Up Revision or VCS
Revision or VCS is mandatory. It allows you to centralize the code,
track the changes made by several developers working in parallel,
and prevent loss of code portions.

Organize Your Repository
Structure

Organizing repository structure in a logical way is helpful in the
building process. The source code of your file and folder structure
should have the same logic organization as the structure in the final
build package.

Place Configuration and
Dependencies in
Repository

Place the configuration and dependencies, including property files,
DDLs, and database connection configurations, in your repository.
This allows you to make fresh checkouts with minimum effort and
no extra complex configuration.

Prepare Your Repository

Prepare your repository for every environment you will need,
creating configuration files for each environment and using
environment variables to specify the environment. You will store
the configuration files in the repository, and use a custom Jenkins
job/process to set up the environment automatically before every
execution, according to the current environment.

Use Pentaho Server

A Pentaho server is mandatory to develop the solution in Pentaho
analytics development (such as reports, dashboards, and analysis
views). If your code repository is a working one, use download and
upload capabilities to integrate developments.

PDI Developments

For PDI development:
File-based solution: PDI developers check out jobs and
transformations to the local drive, and then do their work.
Pentaho Enterprise Repository: developers can work with jobs
and transformations while connected to the Pentaho repository.

Customize Java Options
Use PENTAHO_DI_JAVA_OPTIONS to customize things such as Java
options, memory, cache location, etc.

Continuous Integration with Pentaho

Page 4

© Hitachi Vantara Corporation 2017. All Rights Reserved

Continuous Integration Server
The CI server is the main component in the CI pipeline, orchestrating and organizing the entire process
from a commit to a tested solution package ready to be used or distributed.

Jenkins is CI software that helps automate software development, and is one of the most common
tools used for CI within different Pentaho deployments. Here are a few of its main features:

• Server-based system that supports many VCS integrations (such as SVN and Git)
• Offers capabilities to generate output in testing, such as solution package building
• Open source and can be adapted as needed

The first step is to create a CI project for Jenkins. The following sections break this down into distinct
parts so that you can better understand each stage.

Step 1: Source Code System Definition

The server needs to be able to access the source code. Jenkins offers capabilities to integrate with
many VCSs like Git and Subversion through native plugins, allowing you to connect directly to a specific
URL and branch. This makes Jenkins the workspace of your project once the checkout/clone task is
done.

You must download (export) code from the development environment using the import/export
capabilities if you are using a Pentaho Enterprise Edition (EE) Repository and you plan to deploy
your solution code to the test environment repository. Backup and Restore Pentaho Repositories
has complete instructions on how to do this.

To configure the source code:

1. Select your desired CI project and click Configure.
2. Find the Source Code Management tab and select the radio button for your option.
3. Enter the Repository URL, credentials, and other information to set up integration.

Figure 2: Source Code Management

https://wiki.jenkins.io/display/JENKINS/Building+a+software+project
https://help.pentaho.com/Documentation/8.1/Setup/Administration/Repository/Backup_and_Restore_Pentaho_Repositories

Continuous Integration with Pentaho

Page 5

© Hitachi Vantara Corporation 2017. All Rights Reserved

Step 2: Trigger the Process

The execution gathers the code from the centralized code repository but there are different options
you can select to trigger the process, based on your needs and CI maturity:

Figure 3: Process Triggers

Actively Listen for Repository Changes
CI server tools offer the ability to actively listen for repository changes through a plugin, initiating
integration when the tool detects changes. Jenkins has such a plugin for Git.

Schedule the Execution
You can schedule the process to be executed based on a time rule, and then build periodically. For
example, you can set the rule to nightly if you want nightly builds.

Step 3: Building the Code and Performing Tests

You do not need to compile the Pentaho code, because the code is interpreted at execution time.

We recommend using a product like Apache Maven to resolve dependencies, define targets, or
organize the logical distribution of the solution.

For extract, transform, and load (ETL) projects, the main premise is that Pentaho is used to test
Pentaho. The development of the solution must include the creation of ETL processes to test the
behavior, take a sample of input data, use developed functionality, and evaluate if the results match
as expected. Make sure you run environmental tests such as these, before running ETL tests:

• Can I connect to the database?
• Is the Hadoop cluster up and available?
• Can I run a MapReduce process?

The main ETL items to test are those that are used in many parts of the processes:

• Mapping-Transformation (Sub-Transformation)
• Metadata Injection-driven execution
• Job and transformation execution

https://wiki.jenkins.io/display/JENKINS/Git+Plugin
https://wiki.jenkins.io/display/JENKINS/Schedule+Build+Plugin

Continuous Integration with Pentaho

Page 6

© Hitachi Vantara Corporation 2017. All Rights Reserved

Place your tests in a common location within the repository to allow the CI process to execute it
automatically based on certain rules. For example, everything that is placed under rep/ETL/tests/
will be executed every time the process is triggered.

Triggering Pentaho Testing
There are many ways to perform the testing procedures. Two possible recommended ways to test
Pentaho are:

Method 1: Use built-in scripts to execute Pentaho jobs and transformations

Use the PDI Client in the Jenkins box. The PDI Client can execute code placed locally in the filesystem.
Create an execute shell on your Jenkins project to instantiate Kitchen or Pan commands to execute
each .ktr and .kjb test oriented.

1. Define the environment variables needed before the PDI execution call. We recommend you
use a specific KETTLE_HOME variable to access Pentaho configuration specifically attached to
that environment.

2. Make a rule to decide which transformations or jobs should be executed by the testing
procedure.

3. Handle the results properly. Building procedure depends on testing execution to decide if
the build process was a success or a failure (Kitchen codes or Pan codes).

Use a secure socket shell (SSH) connection in the box where the PDI Client is installed, allowing
you to isolate executions and control over permissions.

4. Execute jobs and transformations using the Pentaho server, calling REST API. In this case, the
code is placed in the Pentaho EE Repository and the execution is performed by the Pentaho
server placed in the test environment for this purpose. See a reference to the available API
endpoints.

Method 2: Use Maven plugins

Enable Maven plugins, like Maven Surefire, to perform automatic testing capabilities, depending on
the level of maturity and the number of tests needed.

Evaluate Testing Results
We recommend using standard output formats for testing results. Using a reporting format as a JUnit
XML output format allows you to incorporate those results into Jenkins and establish success/health
factors to determine if a build satisfies expectations. Using JUnit can become part of the post-build
actions of your process.

Each execution on PDI has an EXIT CODE associated with it (Kitchen codes or Pan codes) that must be
used to determine the results of the test.

https://help.pentaho.com/Documentation/8.1/Products/Data_Integration/Command_Line_Tools#Kitchen_Status_Codes
https://help.pentaho.com/Documentation/8.1/Products/Data_Integration/Command_Line_Tools#Pan_Status_Codes
https://help.pentaho.com/Documentation/8.1/Developer_Center/REST_API/Carte
https://help.pentaho.com/Documentation/8.1/Developer_Center/REST_API/Carte
http://help.catchsoftware.com/display/ET/JUnit+Format
http://help.catchsoftware.com/display/ET/JUnit+Format
https://wiki.jenkins.io/display/JENKINS/JUnit+Plugin
https://help.pentaho.com/Documentation/8.1/Products/Data_Integration/Command_Line_Tools#Kitchen_Status_Codes
https://help.pentaho.com/Documentation/8.1/Products/Data_Integration/Command_Line_Tools#Pan_Status_Codes

Continuous Integration with Pentaho

Page 7

© Hitachi Vantara Corporation 2017. All Rights Reserved

Step 4: Solution Package Generation

Your resulting output should be a ready-to-use package with the solution after building and testing is
finished. The package must be ready to be incorporated in the automatic deployment pipeline or to
be deployed manually as part of your company criteria.

This packaging process can be done through script and extension points within Jenkins, or you can
incorporate Apache Maven capabilities as part of the build lifecycle.

Related Information
Here are some links to information that you may find helpful while using this best practices document:

• Apache
o Build Lifecycle
o Maven Surefire

• Jenkins
o Building a Software Project
o Git Plugin
o Jenkins Homepage
o Scheduled Build Plugin

• Pentaho
o Back Up and Restore Pentaho Repositories
o Carte - API Endpoints
o Components Reference
o Kitchen Status Codes
o Pan Status Codes

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/surefire/maven-surefire-plugin/
https://wiki.jenkins.io/display/JENKINS/Building+a+software+project
https://wiki.jenkins.io/display/JENKINS/Git+Plugin
https://wiki.jenkins.io/display/JENKINS/Home
https://wiki.jenkins.io/display/JENKINS/Schedule+Build+Plugin
https://help.pentaho.com/Documentation/8.1/Setup/Administration/Repository/Backup_and_Restore_Pentaho_Repositories
https://help.pentaho.com/Documentation/8.1/Developer_Center/REST_API/Carte
https://help.pentaho.com/Documentation/8.1/Setup/Components_Reference
https://help.pentaho.com/Documentation/8.1/Products/Data_Integration/Command_Line_Tools#Pan_Status_Codes
https://help.pentaho.com/Documentation/8.1/Products/Data_Integration/Command_Line_Tools#Pan_Status_Codes

Continuous Integration with Pentaho

Page 8

© Hitachi Vantara Corporation 2017. All Rights Reserved

Finalization Checklist
This checklist is designed to be added to any implemented project that uses this collection of best
practices, to verify that all items have been considered and reviews have been performed. (Compose
specific questions about the topics in the document and put them in the table.)

Name of the Project:___

Date of the Review:__

Name of the Reviewer:___

Item Response Comments

Did you maintain a code
repository as the starting
point of your CI workflow?

YES________ NO________

Did you use Jenkins to build
your test system?

YES________ NO________

Did you test your solution in
a clone of your production
environment?

YES________ NO________

Did you test your solution
instead of just testing the
features?

YES________ NO________

Did you use Pentaho to test
Pentaho? YES________ NO________

	Overview
	Before You Begin
	Use Case 1: Constant Changes
	Use Case 2: Sharing the Work

	Continuous Integration (CI) with Pentaho
	Code and Content Repository
	Continuous Integration Server
	Step 1: Source Code System Definition
	Step 2: Trigger the Process
	Actively Listen for Repository Changes
	Schedule the Execution

	Step 3: Building the Code and Performing Tests
	Triggering Pentaho Testing
	Evaluate Testing Results

	Step 4: Solution Package Generation

	Related Information
	Finalization Checklist

